Prefix Sum

input: x[1]...x[n] ‘
output: s[1]...s[n] with s[i] = 3_; x[i] (w.r.t. operator *)

Algorithm 6 PrefixSum(n, x[1]...x[n])

1: // compute prefixsums; n = 2k

2: if n =1 then s[1] < x[1]; return

3: for1l <i<mn/2 pardo

4: ali] « x[2i— 1] % x[2i]

5: z[1],...,z[n/2] < PrefixSum(n/2,al[l]...a[n/2])
6: for 1 <i < n pardo

7 ieven : s[i] < z[i/2]

8 i=1 :s[1l]=x[1]

9 iodd :s[i] < z[(i—1)/2] * x[i]

e,
©Harald Racke

45

Prefix Sum

P00 H®-

t &t &t g

A A
—F-- Z1
A

+O+O>0~0

time steps
1

1

L‘

Sagag

®

x-values

Prefix Sum

The algorithm uses work @(n) and time @(logn) for solving
Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1
On a CREW PRAM a Prefix Sum requires running time Q(logn)
regardless of the number of processors.

m PA 4.1 Prefix Sum
©Harald Racke

47

Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for
every list element; an operator *;

Output: for every list position € the sum (w.r.t. *) of elements
after £ in the list (including ¥)

x[4] x[3] x[7] x[8] x[2] x[1] x[6] x[5]
S[4]=3 S[3]=7 S[7]=8 S[8]=2 S[2]=1 S[1]=6 S[6]=5 S[5]=5

m PA 4.2 Parallel Prefix
©Harald Racke

48




Parallel Prefix

Algorithm 7 ParallelPrefix

: for1 <i < n pardo

P[i] — S[i]

while S[i] = S[S[i]] do
x[i] — x[i] * x[S[i]]
Sli] = S[S[il]

if P[i] # i then S[i] — x[S(i)]

S U1 W N~

The algorithm runs in time O(logn).
It has work requirement @(nlogn). non-optimal

This technique is also known as pointer jumping

e,
©Harald Racke

4.2 Parallel Prefix

49

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1,...,a,) and

B = (by,...,by), compute the sorted squence C = (c1,...,Cn).
Definition 2

Let X = (x1,...,Xx;) be a sequence. The rank rank(y : X) of v in
Xis

rank(y: X) =|{x € X | x < y}|

For a sequence Y = (v1,...,Ys) we define
rank(Y : X) := (ry,...,7s) with r; = rank(y; : X).

4.3 Divide & Conquer — Merging

e
©Harald Racke

50

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (ay...an) and B = (by...by),
compute the sorted squence C = (¢1...cn).

Observation:
We can assume wlog. that elements in A and B are different.
Then for ¢; € C we have i = rank(c; : A U B).

This means we just need to determine rank(x : A U B) for all
elements!

Observe, that rank(x : A U B) = rank(x : A) + rank(x : B).

Clearly, for x € A we already know rank(x : A), and for x € B we
know rank(x : B).

4.3 Divide & Conquer — Merging

e,
©Harald Racke

51

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x € B and rank(x : B) for all x € A.
can be done in O(logn) time with 2n processors by binary
search

Lemma 3
On a CREW PRAM, Merging can be done in O(logn) time and
O(nlogn) work.

not optimal

4.3 Divide & Conquer — Merging

nne,
©Harald Racke

52




