Prefix Sum

input: x[1]...x[n]output: s[1]...s[n] with $s[i] = \sum_{j=1}^{i} x[i]$ (w.r.t. operator *)

 Algorithm 6 PrefixSum(n, x[1]...x[n])

 1: // compute prefixsums; $n = 2^k$

 2: if n = 1 then $s[1] \leftarrow x[1]$; return

 3: for $1 \le i \le n/2$ pardo

 4: $a[i] \leftarrow x[2i-1] * x[2i]$

 5: $z[1], ..., z[n/2] \leftarrow$ PrefixSum(n/2, a[1]...a[n/2])

 6: for $1 \le i \le n$ pardo

 7: i even $: s[i] \leftarrow z[i/2]$

 8: i = 1 : s[1] = x[1]

 9: i odd $: s[i] \leftarrow z[(i-1)/2] * x[i]$

PA ©Harald Räcke

```
45
```

Prefix Sum

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

Parallel Prefix

PA © Harald Räcke

Input: a linked list given by successor pointers; a value x[i] for every list element; an operator *;

Output: for every list position ℓ the sum (w.r.t. *) of elements after ℓ in the list (including ℓ)

Parallel Prefix
Algorithm 7 ParallelPrefix
1: for $1 \le i \le n$ pardo
2: $P[i] \leftarrow S[i]$
3: while $S[i] \neq S[S[i]]$ do
4: $x[i] \leftarrow x[i] * x[S[i]]$
4: $x[i] \leftarrow x[i] * x[S[i]]$ 5: $S[i] \leftarrow S[S[i]]$
6: if $P[i] \neq i$ then $S[i] \leftarrow x[S(i)]$
The algorithm runs in time $O(\log n)$. It has work requirement $O(n \log n)$. non-optimal This technique is also known as pointer jumping
PA 4.2 Parallel Prefix © Harald Räcke

4.3 Divide & Conquer — Merging

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Clearly, for $x \in A$ we already know rank(x : A), and for $x \in B$ we know rank(x : B).

4.3 Divide & Conquer — Merging

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

 $\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = \text{rank}(y_i : X)$.

PA © Harald Räcke 4.3 Divide & Conquer — Merging

50

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all $x \in B$ and rank(x : B) for all $x \in A$. can be done in $O(\log n)$ time with 2n processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n \log n)$ work.

not optimal

PA © Harald Räcke

49