4.3 Divide & Conquer — Merging

A= (ai,...,an); B = (by,...,bn);
log n integral; k := n/logn integral;

Algorithm 8 GenerateSubproblems
Jjo—0

1
2. Jk—n

3: forl <i<k-1 pardo

4: Ji — rank(bjiogn : A)

5: for0 <i<k—-1 pardo

6 Bi < (bitogn+1,---+D(i+1)logn)
7 Ai<—(aji+1,...,ajm)

If C; is the merging of A; and B; then the sequence Cy...Cy_1 is
a sorted sequence.

m PA 4.3 Divide & Conquer — Merging
©Harald Racke

53

4.3 Divide & Conquer — Merging
We can generate the subproblems in time @O (logn) and work
On).
Note that in a sub-problem B; has length log n.

If we run the algorithm again for every subproblem, (where A;
takes the role of B) we can in time O(loglogn) and work O(n)
generate subproblems where A; and B; have both length at
most log n.

Such a subproblem can be solved by a single processor in time
O(logn) and work O(|A;| + |B;l).

Parallelizing the last step gives total work O(n) and time
O(logn).

the resulting algorithm is work optimal

m PA 4.3 Divide & Conquer — Merging
©Harald Racke

54

4.4 Maximum Computation

Lemma 4
On a CRCW PRAM the maximum of n numbers can be computed
in time ©(1) with n? processors.

proof on board...

m PA 4.4 Maximum Computation
©Harald Racke

55

4.4 Maximum Computation

Lemma 5
On a CRCW PRAM the maximum of n numbers can be computed
in time O(loglogn) with n processors and work O (nloglogn).

proof on board...

m PA 4.4 Maximum Computation
©Harald Racke

56

4.4 Maximum Computation

Lemma 6
On a CRCW PRAM the maximum of n numbers can be computed
in time O(loglogn) with n processors and work O (n).

proof on board...

m PA 4.4 Maximum Computation
©Harald Racke

57

4.5 Inserting into a (2, 3)-tree

Given a (2, 3)-tree with n elements, and a sequence

X0 < X1 < X2 < ---<xy of elements. We want to insert
elements x1,..., X into the tree (k < n).

time: @ (log n); work: O (klog n)

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

58

4.5 Inserting into a (2, 3)-tree

1. determine for every x; the leaf element before which it has
to be inserted
time: O(logn); work: @(klogn); CREW PRAM

all x;’s that have to be inserted before the same element
form a chain

2. determine the largest/smallest/middle element of every
chain
time: O(1); work: O(k);

3. insert the middle element of every chain
compute new chains
time: O(logn); work: O(k;logn); k= #inserted elements
(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds
time: O(lognlogk); work: O(klogn);

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

59

Step 3

» each internal node is split into at most two parts

v

each split operation promotes at most one element

» hence, on every level we want to insert at most one element
per successor pointer

» we can use the same routine for every level

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

60

