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Euler Circuits

Every node v fixes an arbitrary ordering among its adjacent

nodes:

u0, u1, . . . , ud−1

We obtain an Euler tour by setting

succ((ui, v)) = (v,u(i+1) mod d)
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Euler Circuits

Lemma 1

An Euler circuit can be computed in constant time O(1) with

O(n) operations.

PA 6 Tree Algorithms

© Harald Räcke 92/295



Euler Circuits — Applications

Rooting a tree

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 1 for every edge;

ñ perform parallel prefix; let s[·] be the result array

ñ if s[(u,v)] < s[(v,u)] then u is parent of v;
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Euler Circuits — Applications

Postorder Numbering

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 1 for every edge (v,parent(v))
ñ assign x[e] = 0 for every edge (parent(v), v)
ñ perform parallel prefix

ñ post(v) = s[(v,parent(v))]; post(r) = n
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Euler Circuits — Applications

Level of nodes

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = −1 for every edge (v,parent(v))
ñ assign x[e] = 1 for every edge (parent(v), v)
ñ perform parallel prefix

ñ level(v) = s[(parent(v), v)]; level(r) = 0
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Euler Circuits — Applications

Number of descendants

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 0 for every edge (parent(v), v)
ñ assign x[e] = 1 for every edge (v,parent(v)), v ≠ r
ñ perform parallel prefix

ñ size(v) = s[(v,parent(v))]− s[(parent(v), v)]
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Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))
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Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the
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ñ remove u and p(u)
ñ attach sibling of u to p(p(u))
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We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs
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Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves
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Observations

ñ the rake operation does not change the order of leaves

ñ two leaves that are siblings do not perform a rake operation

in the same round because one is even and one odd at the

start of the round

ñ two leaves that have adjacent parents either have different

parity (even/odd) or they differ in the type of child

(left/right)
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Cases, when the left edge btw. p(u) and p(v) is a left-child

edge.

1 2

u

v

u

2

3 4

v
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ñ one iteration can be performed in constant time with O(|A|)
processors, where A is the array of leaves;

ñ hence, all iterations can be performed in O(logn) time and

O(n) work;

ñ the intial parallel prefix also requires time O(logn) and

work O(n)
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Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing

additions and multiplications.

+

∗

∗

A1 A2

+

A3 A4

+

+

A5 A6

∗

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

∗ ∗

If the tree is not balanced this may be time-consuming.
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We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.
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Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w
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If we change the a and b-values during a rake-operation

according to the previous slide we can calculate the value of the

root in the end.

Lemma 2

We can evaluate an arithmetic expression tree in time O(logn)
and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can

also compute the value at each node in the tree.
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Lemma 3

We compute tree functions for arbitrary trees in time O(logn)
and a linear number of operations.

proof on board...
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In the LCA (least common ancestor) problem we are given a tree

and the goal is to design a data-structure that answers

LCA-queries in constant time.

PA 6 Tree Algorithms

© Harald Räcke 109/295



Least Common Ancestor

LCAs on complete binary trees (inorder numbering):

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

1000

0100

0010

0001 0011

0110

0101 0111

1100

1010

1001 1011

1110

1101 1111

The least common ancestor of u and v is

z1 z2 . . . zi 1 0 . . . 0

where zi+1 is the first bit-position in which u and v differ.
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Least Common Ancestor

1

2

3 4

5 6 7

8 9

1 2 3 2 4 5 4 6 4 7 4 2 1 8 1 9 1

0 1 2 1 2 3 2 3 2 3 2 1 0 1 0 1 0

nodes

levels

PA 6 Tree Algorithms

© Harald Räcke 111/295



`(v) is index of first appearance of v in node-sequence.

r(v) is index of last appearance of v in node-squence.

`(v) and r(v) can be computed in constant time, given the

node- and level-sequence.
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Least Common Ancestor

Lemma 4

1. u is ancestor of v iff `(u) < `(v) < r(u)

2. u and v are not related iff either r(u) < `(v) or

`(u) < r(v)

3. suppose r(u) < `(v) then LCA(u,v) is vertex with

minimum level over interval [r(u), `(v)].
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Range Minima Problem

Given an array A[1 . . . n], a range minimum query (`, r) consists

of a left index ` ∈ {1, . . . , n} and a right index r ∈ {1, . . . , n}.

The answer has to return the index of the minimum element in

the subsequence A[` . . . r ].

The goal in the range minima problem is to preprocess the array

such that range minima queries can be answered quickly

(constant time).
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Observation

Given an algorithm for solving the range minima problem in time

T(n) and work W(n) we can obtain an algorithm that solves the

LCA-problem in time O(T(n)+ logn) and work O(n+W(n)).

Remark

In the sequential setting the LCA-problem and the range minima

problem are equivalent. This is not necessarily true in the

parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted

range minima problem where two successive elements in the

array just differ by +1 or −1.
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Prefix and Suffix Minima

Tree with prefix-minima and suffix-minima:

6 4 2 3 4 5 1 6 0 5 1 6 3 4 5 3

6 4 2 2 2 2 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 06 4 2 2 2 2 1 1

6 4 2 2 4 4 1 1 0 0 0 0 3 3 3 3

6 4 2 2 4 4 1 1 0 0 1 1 3 3 5 3

3333311000000000

3333311061111111

3222 6111 6110 3333

44 32 54 61 50 61 43 33
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ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.
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Lemma 5

We can solve the range minima problem in time O(logn) and

work O(n logn).
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Reducing the Work

Partition A into blocks Bi of length logn

Preprocess each Bi block separately by a sequential algorithm so

that range-minima queries within the block can be answered in

constant time. (how?)

For each block Bi compute the minimum xi and its prefix and

suffix minima.

Use the previous algorithm on the array (x1, . . . , xn/ logn).
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Answering a query (`, r):

ñ if ` and r are from the same block the data-structure for

this block gives us the result in constant time

ñ if ` and r are from different blocks the result is a minimum

of three elements:

• the suffix minmum of entry ` in `’s block

• the minimum among x`+1, . . . , xr−1

• the prefix minimum of entry r in r ’s block
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