Tree Algorithms

®

@—»—»

®@—0 @

4

JEICEEECREE
NEACRE 4-}»{ R ZCY

I

‘@%@J%

CEECy

> H—>[8>4

SsiCg

N

%.»

[elo[~fa]o[s]e]n] =]

)

Euler Circuits

Every node v fixes an arbitrary ordering among its adjacent
nodes:
U, ULy -y Ud—1

We obtain an Euler tour by setting

succ((ui, v)) = (V,U¢i+1) mod d)

‘m PA 6 Tree Algorithms
©Harald Racke

91

Euler Circuits

Lemma 1
An Euler circuit can be computed in constant time O(1) with
O(n) operations.

‘m PA 6 Tree Algorithms
©Harald Racke

92

Euler Circuits — Applications

Rooting a tree

Tt

>

>

| 2

PA

split the Euler tour at node

this gives a list on the set of directed edges (Euler path)
assign x[e] = 1 for every edge;

perform parallel prefix; let s[-] be the result array

if s[(u,v)] < s[(v,u)] then u is parent of v;

6 Tree Algorithms

©Harald Racke

93

Euler Circuits — Applications

Postorder Numbering

>

>

>

Tune,
©Harald Racke

split the Euler tour at node r

this gives a list on the set of directed edges (Euler path)
assign x[e] = 1 for every edge (v, parent(v))

assign x[e] = 0 for every edge (parent(v),v)

perform parallel prefix

post(v) = s[(v,parent(v))]; post(r) =n

6 Tree Algorithms

94

Euler Circuits — Applications

Level of nodes
> split the Euler tour at node »
» this gives a list on the set of directed edges (Euler path)
» assign x[e] = —1 for every edge (v, parent(v))
» assign x[e] = 1 for every edge (parent(v),v)
» perform parallel prefix

v

level(v) = s[(parent(v),v)]; level(v) =0

‘m PA 6 Tree Algorithms
©Harald Racke

95

Euler Circuits — Applications

Number of descendants

>

>

>

>

Tune,
©Harald Racke

split the Euler tour at node r

this gives a list on the set of directed edges (Euler path)
assign x[e] = 0 for every edge (parent(v),v)

assign x[e] =1 for every edge (v, parent(v)), v = r
perform parallel prefix

size(v) = s[(v, parent(v))] — s[(parent(v),v)]

6 Tree Algorithms

96

Rake Operation

Given a binary tree T.

Given a leaf u € T with p(u) # v the rake-operation does the
following

» remove u and p(u)
» attach sibling of u to p(p(u))

® © @/'

‘m PA 6 Tree Algorithms
©Harald Racke

97

We want to apply rake operations to a binary tree T until T just
consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two
siblings

2. we could concurrently apply the rake-operation to two
leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above
cases occurs

‘m PA 6 Tree Algorithms
©Harald Racke

98

Algorithm:

» label leaves consecutively from left to right (excluding
left-most and right-most leaf), and store them in an array A
» for [log(n + 1)] iterations
» apply rake to all odd leaves that are left children
> apply rake operation to remaining odd leaves (odd at start
of round!!!)
» A=even leaves

‘m PA 6 Tree Algorithms
©Harald Racke

99

Observations
» the rake operation does not change the order of leaves

» two leaves that are siblings do not perform a rake operation
in the same round because one is even and one odd at the
start of the round

» two leaves that have adjacent parents either have different
parity (even/odd) or they differ in the type of child
(left/right)

‘m PA 6 Tree Algorithms
©Harald Racke

100

Cases, when the left edge btw. p(u) and p(v) is a left-child
edge.

@)

o

oo d
o

‘m PA 6 Tree Algorithms
©Harald Racke 101

Example

Tt

PA
©Harald Racke

6 Tree Algorithms

102

» one iteration can be performed in constant time with O(|A])
processors, where A is the array of leaves;

» hence, all iterations can be performed in O(logn) time and
O(n) work;

» the intial parallel prefix also requires time O(logn) and
work O (n)

‘m PA 6 Tree Algorithms
©Harald Racke

103

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing
additions and multiplications.

e,
o o & e
d% &%

@-»@-»@-»
bbddddéé
If the tree is not balanced this may be time-consuming.

‘m PA 6 Tree Algorithms
©Harald Racke

104

We can use the rake-operation to do this quickly.
Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters a, and
b, for every node that still allows to compute the value of a
node based on the value of its children.

Invariant:
Let 1 be internal node with children v and w. Then

val(un) = (ay - val(v) + by) ® (ay - val(w) + by)
where ® € {x,+} is the operation at node u.

Initially, we can choose a, = 1 and b, = 0 for every node.

‘m PA 6 Tree Algorithms
©Harald Racke

105

Rake Operation
®
el
'd o " e

Currently the value at u is

val(u) = (ay -val(v) + by) + (aw - val(w) + by)

=x1 + (ay - val(w) + by)
In the expression for v this goes in as

ay-[x1+ (ay -val(w) + by)] + by

=ayay -val(w) + ayx1 + aybw + by
e — - i}

~

aw bw

‘m PA 6 Tree Algorithms
©Harald Racke

106

If we change the a and b-values during a rake-operation
according to the previous slide we can calculate the value of the
root in the end.

Lemma 2
We can evaluate an arithmetic expression tree in time O(logn)
and work O (n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can
also compute the value at each node in the tree.

‘m PA 6 Tree Algorithms
©Harald Racke

107

Lemma 3
We compute tree functions for arbitrary trees in time O(logn)
and a linear number of operations.

proof on board...

‘m PA 6 Tree Algorithms
©Harald Racke

108

In the LCA (least common ancestor) problem we are given a tree
and the goal is to design a data-structure that answers
LCA-queries in constant time.

‘m PA 6 Tree Algorithms
©Harald Racke

109

Least Common Ancestor

LCAs on complete binary trees (inorder numbering):

1000

0001 0011 0101 0111 1001 1011 1101 1111
The least common ancestor of u and v is

Z122 ...2z{10...0

where z;,1 is the first bit-position in which u and v differ.

‘m PA 6 Tree Algorithms
©Harald Racke

110

Least Common Ancestor

O
(2) ® O,
ONO
& © O

nodes [1]z[s[2]a[s[4a]e[s]7]a]2][1]e][1]o]1]

levels |o]1][2]1]2[3]2]3][2]3]2]1]o]1]0]1]0]

‘m PA 6 Tree Algorithms
©Harald Racke

111

{(v) is index of first appearance of v in node-sequence.

¥ (v) is index of last appearance of v in node-squence.

{(v) and r(v) can be computed in constant time, given the
node- and level-sequence.

‘m PA 6 Tree Algorithms
©Harald Racke

112

Least Common Ancestor

Lemma 4

1. u is ancestor of v iff £(u) < £(v) < r(u)

2. u and v are not related iff either v (u) < £(v) or
L(u) <r)

3. suppose v (u) < £(v) then LCA(u,v) is vertex with
minimum level over interval [v (u),£(v)].

‘m PA 6 Tree Algorithms
©Harald Racke

113

Range Minima Problem

Given an array A[1...n], a range minimum query (£,%) consists
of a left index £ € {1,...,n} and a right index r € {1,...,n}.

The answer has to return the index of the minimum element in
the subsequence A[L...7].

The goal in the range minima problem is to preprocess the array
such that range minima queries can be answered quickly
(constant time).

‘m PA 6 Tree Algorithms
©Harald Racke

114

Observation

Given an algorithm for solving the range minima problem in time
T(n) and work W(n) we can obtain an algorithm that solves the
LCA-problem in time O(T(n) + logn) and work O(n + W(n)).

Remark

In the sequential setting the LCA-problem and the range minima
problem are equivalent. This is not necessarily true in the
parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted
range minima problem where two successive elements in the
array just differ by +1 or —1.

‘m PA 6 Tree Algorithms
©Harald Racke

115

Prefix and Suffix Minima

Tree with prefix-minima and suffix-minima:

0 0|0 1(1(3(3
2 2|11 (1 o(o(o0|0
111 1 0of1 3 3
4(2(2 1 0|0 0 0
2|2 3 1 6 oOf1(1]6 313|3(3
6|4 2 4 1 ojofofo 3|13|3(3
414 23 5 1(6 05 1 3|4 3|3
6 2 1 0 3 5(3

Tt

PA

bd

©Harald Racke

bd

bd

6 Tree Algorithms

116

» Suppose we have an array A of length n = 2k
» We compute a complete binary tree T with n leaves.

» Each internal node corresponds to a subsequence of A. It
contains an array with the prefix and suffix minima of this
subsequence.

Given the tree T we can answer a range minimum query (£,7) in
constant time.

» we can determine the LCA x of £ and ¥ in constant time
since T is a complete binary tree

» Then we consider the suffix minimum of £ in the left child
of x and the prefix minimum of r in the right child of x.

» The minimum of these two values is the result.

‘m PA 6 Tree Algorithms
©Harald Racke

117

Lemma 5
We can solve the range minima problem in time O(logn) and
work O (nlogn).

‘m PA 6 Tree Algorithms
©Harald Racke

118

Reducing the Work

Partition A into blocks B; of length logn

Preprocess each B; block separately by a sequential algorithm so
that range-minima queries within the block can be answered in
constant time. (how?)

For each block B; compute the minimum x; and its prefix and
suffix minima.

Use the previous algorithm on the array (x1,...,Xn/logn)-

‘m PA 6 Tree Algorithms
©Harald Racke 119

Answering a query (£,r):

» if £ and r are from the same block the data-structure for
this block gives us the result in constant time

» if £ and r are from different blocks the result is @ minimum
of three elements:

e the suffix minmum of entry £ in £’s block
e the minimum among Xp,1,...,Xr-1

e the prefix minimum of entry v in 7’s block

‘m PA 6 Tree Algorithms
©Harald Racke

120

	Tree Algorithms

