

Lemma 1

An Euler circuit can be computed in constant time O(1) with O(n) operations.

PA ©Harald Räcke

6 Tree Algorithms

92

Euler Circuits

Every node v fixes an arbitrary ordering among its adjacent nodes:

 $u_0, u_1, \ldots, u_{d-1}$

We obtain an Euler tour by setting

 $\operatorname{succ}((u_i, v)) = (v, u_{(i+1) \mod d})$

PA ©Harald Räcke

6 Tree Algorithms

Euler Circuits — Applications

Postorder Numbering

- split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- assign x[e] = 1 for every edge (v, parent(v))
- assign x[e] = 0 for every edge (parent(v), v)
- perform parallel prefix
- post(v) = s[(v, parent(v))]; post(r) = n

© Harald Räcke	6 Tree Algorithms

Euler Circuits — Applications Number of descendants • split the Euler tour at node r• this gives a list on the set of directed edges (Euler path) • assign x[e] = 0 for every edge (parent(v), v) • assign x[e] = 1 for every edge (v, parent(v)), $v \neq r$ • perform parallel prefix • size(v) = s[(v, parent(v))] - s[(parent(<math>v), v)]

Euler Circuits — Applications

Level of nodes

- split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- assign x[e] = -1 for every edge (v, parent(v))
- assign x[e] = 1 for every edge (parent(v), v)
- perform parallel prefix
- $\operatorname{level}(v) = s[(\operatorname{parent}(v), v)]; \operatorname{level}(r) = 0$

החוחו	PA © Harald Räcke
	© Harald Räcke

94

96

6 Tree Algorithms

We want to apply rake operations to a binary tree T until T just consists of the root with two children.

Possible Problems:

- 1. we could concurrently apply the rake-operation to two siblings
- 2. we could concurrently apply the rake-operation to two leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above cases occurs

	6 Tree Algorithms	
	o nee Aigontiniis	
UUU © Harald Räcke		98
		50

Observations

- the rake operation does not change the order of leaves
- two leaves that are siblings do not perform a rake operation in the same round because one is even and one odd at the start of the round
- two leaves that have adjacent parents either have different parity (even/odd) or they differ in the type of child (left/right)

Algorithm:

- label leaves consecutively from left to right (excluding left-most and right-most leaf), and store them in an array A
- for $\lceil \log(n+1) \rceil$ iterations
 - apply rake to all odd leaves that are left children
 - apply rake operation to remaining odd leaves (odd at start of round!!!)
 - A=even leaves

PA ©Harald Räcke 6 Tree Algorithms 99

Example		
	8	
PA © Harald Räck	6 Tree Algorithms ke	102

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing additions and multiplications.

- ► one iteration can be performed in constant time with O(|A|) processors, where A is the array of leaves;
- ▶ hence, all iterations can be performed in O(log n) time and O(n) work;
- ► the initial parallel prefix also requires time O(log n) and work O(n)

PA © Harald Räcke 6 Tree Algorithms

103

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters a_v and b_v for every node that still allows to compute the value of a node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

 $\operatorname{val}(u) = (a_v \cdot \operatorname{val}(v) + b_v) \otimes (a_w \cdot \operatorname{val}(w) + b_w)$

where $\otimes \in \{*, +\}$ is the operation at node u.

Initially, we can choose $a_v = 1$ and $b_v = 0$ for every node.

If we change the a and b-values during a rake-operation according to the previous slide we can calculate the value of the root in the end.

Lemma 2

We can evaluate an arithmetic expression tree in time $O(\log n)$ and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can also compute the value at each node in the tree.

PA © Harald Räcke

6 Tree Algorithms

107

Lemma 3

We compute tree functions for arbitrary trees in time $O(\log n)$ and a linear number of operations.

proof on board...

		ancestor) problem we are given a tree data-structure that answers ne.
M	PA © Harald Räcke	6 Tree Algorithms

PA © Harald Räcke

 $\ell(v)$ is index of first appearance of v in node-sequence.

r(v) is index of last appearance of v in node-squence.

 $\ell(v)$ and r(v) can be computed in constant time, given the node- and level-sequence.

Least Common Ancestor (8) 9 3 nodes 7 4 2 1 8 1 9 1 1 2 4 6 4 3 2 4 5 levels 0 1 2 1 2 3 2 3 2 3 2 1 0 1 0 1 0 PA © Harald Räcke 6 Tree Algorithms 111

Range Minima Problem

Given an array A[1...n], a range minimum query (ℓ, r) consists of a left index $\ell \in \{1, ..., n\}$ and a right index $r \in \{1, ..., n\}$.

The answer has to return the index of the minimum element in the subsequence $A[\ell \dots r]$.

The goal in the range minima problem is to preprocess the array such that range minima queries can be answered quickly (constant time).

PA ©Harald Räcke 6 Tree Algorithms

114

Observation

Given an algorithm for solving the range minima problem in time T(n) and work W(n) we can obtain an algorithm that solves the LCA-problem in time $\mathcal{O}(T(n) + \log n)$ and work $\mathcal{O}(n + W(n))$.

Remark

In the sequential setting the LCA-problem and the range minima problem are equivalent. This is not necessarily true in the parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted range minima problem where two successive elements in the array just differ by +1 or -1.

PA ©Harald Räcke 6 Tree Algorithms

115

- Suppose we have an array A of length $n = 2^k$
- We compute a complete binary tree *T* with *n* leaves.
- Each internal node corresponds to a subsequence of *A*. It contains an array with the prefix and suffix minima of this subsequence.

Given the tree T we can answer a range minimum query (ℓ,r) in constant time.

- ► we can determine the LCA x of ℓ and r in constant time since T is a complete binary tree
- Then we consider the suffix minimum of ℓ in the left child of x and the prefix minimum of r in the right child of x.
- > The minimum of these two values is the result.

Lemma 5

We can solve the range minima problem in time $O(\log n)$ and work $O(n \log n)$.

PA © Harald Räcke

6 Tree Algorithms

118

Answering a query (ℓ, r) :

- if l and r are from the same block the data-structure for this block gives us the result in constant time
- if ℓ and r are from different blocks the result is a minimum of three elements:
 - the suffix minmum of entry ℓ in ℓ 's block
 - the minimum among $x_{\ell+1}, \ldots, x_{r-1}$
 - the prefix minimum of entry *r* in *r*'s block

Reducing the Work

Partition A into blocks B_i of length $\log n$

Preprocess each B_i block separately by a sequential algorithm so that range-minima queries within the block can be answered in constant time. (how?)

For each block B_i compute the minimum x_i and its prefix and suffix minima.

Use the previous algorithm on the array $(x_1, \ldots, x_{n/\log n})$.

PA © Harald Räcke 6 Tree Algorithms

119

