Bufferfly Network BF(d)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

{ e[d+ 1]}, where

Z]d’
.X4-1 is a bit-string of length d

[

€

» nodesetV = {({,x) | x

X0X1 .-

> edge set

{{,%), @+ 1,%)} | £ €[d]l,x €[2]% x| = x; fori=+{}

E =

Sometimes the first and last level are identified.

Benes Network

111

WAV S4N
\VI '0-0' \V/

A
'M\pA A‘lm

IIA\ XX XN
VANSOSAV.

110
101

010
001

000

-3 -2 -1 0 1 2 3

» nodesetV = {({,x) | xe[2]4,Le{-d,..., da}

> edge set
E={{{,x),d+1,x)}|Leld]l,x e [Z]d,xlf =xfori=+{}
Ul{(-4,%),-1,%)} | £ €ld],x € [2]% x| = x;i fori + {}

n-ary Bufferfly Network BF(n, d)

S ———=ot
422:2 = §§\\
T N TSN,
SR N N
RPN | R | 8RR
1 ‘0/?:'//“:'6‘05‘:}\\‘:§0$ ‘0/?:';‘:"‘!;‘:}\\“05\05 ‘0/?:'//‘{'6‘0;‘}\\“05\05
Ve DR I DR D DAL i D
0 /‘!\0 ./‘!\0 0/‘!\ /t’\. ./t’\. 0/‘!\ /‘!\0 ./t’\. 0/‘!\

» nodesetV = {({,x) | x € [n]4,¢ e [d + 1]}, where
X = X0X1 ...Xq-1 is a bit-string of length d

> edge set
E={{({,x),¢+1,x)}|Leld]l,x e [n]4x]=xfori=+{}

Permutation Network PN(n, d)

> There is an n-ary version of the Benes network (2 n-ary
butterflies glued at level 0).

> identifying levels 0 and 1 (or 0 and —1) gives PN(n,d).

The d-dimensional mesh M(n, d)

o Fro o
q LT TS - S
ha s - u
S > ST >
RSO
q 555‘:“ R
) o N A SV B
119 z '
q NavwEbs WIS NL L
\r)—_f‘zr— \\)

> node set V = [n]4

> edge set E = {{(x0,...,Xiy.--, Xd-1), (X0,.-., Xi +1,...,XxX3-1)} |
xs€[n]forseld]l\{i},xie[n-1]}

Remarks

M(2,d) is also called d-dimensional hypercube.

M(n,1) is also called linear array of length n.

m PA 11 Some Networks
©Harald Racke

Permutation Routing

Lemma 1
On the linear array M(n, 1) any permutation can be routed
online in 2n steps with buffersize 3.

‘m PA 11 Some Networks =)
©Harald Racke

Permutation Routing

Lemma 2
On the Benes network any permutation can be routed offline in
2d steps between the sources level (+d) and target level (-d).

‘m PA 11 Some Networks =) =
©Harald Racke

Recursive Benes Network

\\ / A\X
//)I XOJ

NN/ o X /1
NN " N < ‘VO’I AN
WIXXXX XXXXL/ANN
/] \ VIAA\ #A A‘ IAOAV [A\

Permutation Routing

Permutation Routing

base cased =0
trivial

Permutation Routing
base cased =0

trivial
inductionstepd - d + 1

» The packets that start at (a,d) and (a(d),d) have to be
sent into different sub-networks.

Permutation Routing

base cased =0
trivial

inductionstepd - d + 1
» The packets that start at (a,d) and (a(d),d) have to be
sent into different sub-networks.

» The packets that end at (a,—d) and (a(d), —d) have to
come out of different sub-networks.

Permutation Routing

base cased =0
trivial

inductionstepd - d + 1
» The packets that start at (a,d) and (a(d),d) have to be
sent into different sub-networks.

» The packets that end at (a,—d) and (a(d), —d) have to
come out of different sub-networks.

We can generate a graph on the set of packets.

» Every packet has an incident source edge (connecting it to
the conflicting start packet)

Permutation Routing

base cased =0
trivial

inductionstepd - d + 1
» The packets that start at (a,d) and (a(d),d) have to be
sent into different sub-networks.

» The packets that end at (a,—d) and (a(d), —d) have to
come out of different sub-networks.

We can generate a graph on the set of packets.
» Every packet has an incident source edge (connecting it to
the conflicting start packet)

» Every packet has an incident target edge (connecting it to
the conflicting packet at its target)

Permutation Routing

base cased =0
trivial

inductionstepd - d + 1
» The packets that start at (a,d) and (a(d),d) have to be
sent into different sub-networks.

» The packets that end at (a,—d) and (a(d), —d) have to
come out of different sub-networks.

We can generate a graph on the set of packets.
» Every packet has an incident source edge (connecting it to
the conflicting start packet)
» Every packet has an incident target edge (connecting it to
the conflicting packet at its target)

» This clearly gives a bipartite graph; Coloring this graph tells
us which packet to send into which sub-network.

Permutation Routing on the n-ary Benes Network

Permutation Routing on the n-ary Benes Network

Instead of two we have n sub-networks B(n,d — 1).

Permutation Routing on the n-ary Benes Network
Instead of two we have n sub-networks B(n,d — 1).

All packets starting at positions
{(x0y ...y Xiy..y Xd-1,4) | x; € [n]} have to be send to different
sub-networks.

Permutation Routing on the 7n-ary Benes Network
Instead of two we have n sub-networks B(n,d — 1).

All packets starting at positions

{(x0y ...y Xiy..y Xd-1,4) | x; € [n]} have to be send to different
sub-networks.

All packets ending at positions

{(x0y+. s Xiy..yXd-1,4) | x; € [n]} have to come from different
sub-networks.

Permutation Routing on the 7n-ary Benes Network

Instead of two we have n sub-networks B(n,d — 1).

All packets starting at positions

{(x0y ...y Xiy..y Xd-1,4) | x; € [n]} have to be send to different
sub-networks.

All packets ending at positions
{(x0y+. s Xiy..yXd-1,4) | x; € [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

Permutation Routing on the 7n-ary Benes Network
Instead of two we have n sub-networks B(n,d — 1).

All packets starting at positions

{(x0y ...y Xiy..y Xd-1,4) | x; € [n]} have to be send to different
sub-networks.

All packets ending at positions

{(x0y+. s Xiy..yXd-1,4) | x; € [n]} have to come from different
sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes
in a hyperedge share a color.

Permutation Routing on the 7n-ary Benes Network

Instead of two we have n sub-networks B(n,d — 1).

All packets starting at positions
{(x0y ...y Xiy..y Xd-1,4) | x; € [n]} have to be send to different

sub-networks.

All packets ending at positions
{(x0y+. s Xiy..yXd-1,4) | x; € [n]} have to come from different

sub-networks.
The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes
in a hyperedge share a color.

This gives the routing.

Lemma 3
On a d-dimensional mesh with sidelength n we can route any
permutation (offline) in 4dn steps.

‘m PA 11 Some Networks =)
©Harald Racke

We can simulate the algorithm for the n-ary Bene$ Network.

m PA 11 Some Networks =)
©Harald Racke

We can simulate the algorithm for the n-ary Benes Network.

Each step can be simulated by routing on disjoint linear arrays.

This takes at most 2n steps.

‘m PA 11 Some Networks =)
©Harald Racke

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

Inround v € {-d,...,-1,0,1,...,d — 1} we simulate the step of
sending from level ¥ of the Benes network to level r + 1.

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

Inround v € {-d,...,-1,0,1,...,d — 1} we simulate the step of
sending from level ¥ of the Benes network to level r + 1.

Each node x € [n]? of the mesh simulates the node (7, x).

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

Inround v € {-d,...,-1,0,1,...,d — 1} we simulate the step of
sending from level ¥ of the Benes network to level r + 1.

Each node x € [n]? of the mesh simulates the node (7, x).

Hence, if in the Benes$ network we send from (v, x) to (r +1,X")
we have to send from x to X’ in the mesh.

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

Inround v € {-d,...,-1,0,1,...,d — 1} we simulate the step of
sending from level ¥ of the Benes network to level r + 1.

Each node x € [n]? of the mesh simulates the node (7, x).

Hence, if in the Benes$ network we send from (v, x) to (r +1,X")
we have to send from x to X’ in the mesh.

All communication is performed along linear arrays. In round
¥ < 0 the linear arrays along dimension —¥ — 1 (recall that
dimensions are numbered from 0 to d — 1) are used

Xd—1+e: Xy AX_y_2...X0

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

Inround v € {-d,...,-1,0,1,...,d — 1} we simulate the step of
sending from level ¥ of the Benes network to level r + 1.

Each node x € [n]? of the mesh simulates the node (7, x).

Hence, if in the Benes$ network we send from (v, x) to (r +1,X")
we have to send from x to X’ in the mesh.

All communication is performed along linear arrays. In round
¥ < 0 the linear arrays along dimension —¥ — 1 (recall that
dimensions are numbered from 0 to d — 1) are used

Xd—1+e: Xy AX_y_2...X0

In rounds ¥ > O linear arrays along dimension 7 are used.

We simulate the behaviour of the Bene$ network on the
n-dimensional mesh.

Inround v € {-d,...,-1,0,1,...,d — 1} we simulate the step of
sending from level ¥ of the Benes network to level r + 1.

Each node x € [n]? of the mesh simulates the node (7, x).

Hence, if in the Benes$ network we send from (v, x) to (r +1,X")
we have to send from x to X’ in the mesh.

All communication is performed along linear arrays. In round
¥ < 0 the linear arrays along dimension —¥ — 1 (recall that
dimensions are numbered from 0 to d — 1) are used

Xd—1+e: Xy AX_y_2...X0

In rounds ¥ > O linear arrays along dimension 7 are used.

Hence, we can perform a round in O(n) steps.

Lemma 4
We can route any permutation on the Benes network in O(d)
steps with constant buffer size.

‘m PA 11 Some Networks =)
©Harald Racke

Lemma 4
We can route any permutation on the Benes network in O(d)

steps with constant buffer size.

The same is true for the butterfly network.

‘m PA 11 Some Networks
©Harald Racke

The nodes are of the form (¢, %), x € [n]4,¢ € -d,...,d.

m PA 11 Some Networks
©Harald Racke

The nodes are of the form (¢, %), x € [n]4,¢ € -d,...,d.

We can view nodes with same first coordinate forming columns
and nodes with the same second coordinate as forming rows.
This gives rows of length 2d + 1 and columns of length n<.

‘m PA 11 Some Networks =) =
©Harald Racke

The nodes are of the form (¢, %), x € [n]4,¢ € -d,...,d.

We can view nodes with same first coordinate forming columns
and nodes with the same second coordinate as forming rows.
This gives rows of length 2d + 1 and columns of length n<.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no
column contains packets that have the same target row.
O(d) steps.

‘m PA 11 Some Networks =) =
©Harald Racke

The nodes are of the form (¢, %), x € [n]4,¢ € -d,...,d.

We can view nodes with same first coordinate forming columns
and nodes with the same second coordinate as forming rows.
This gives rows of length 2d + 1 and columns of length n<.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no
column contains packets that have the same target row.
O(d) steps.

2. We can use pipeling to permute every column, so that
afterwards every packet is in its target row. O(2d + 2d)
steps.

m PA 11 Some Networks
©Harald Racke

The nodes are of the form (¢, %), x € [n]4,¢ € -d,...,d.

We can view nodes with same first coordinate forming columns
and nodes with the same second coordinate as forming rows.
This gives rows of length 2d + 1 and columns of length n<.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no
column contains packets that have the same target row.
O(d) steps.

2. We can use pipeling to permute every column, so that
afterwards every packet is in its target row. O(2d + 2d)
steps.

3. Every packet is in its target row. Permute packets to their
right destinations. O(d) steps.

m PA 11 Some Networks
©Harald Racke

Lemma 5
We can do offline permutation routing of (partial) permutations
in 2d steps on the hypercube.

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 5

We can do offline permutation routing of (partial) permutations
in 2d steps on the hypercube.

Lemma 6
We can sort on the hypercube M(2,d) in O(d?) steps.

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 5

We can do offline permutation routing of (partial) permutations
in 2d steps on the hypercube.

Lemma 6
We can sort on the hypercube M(2,d) in O(d?) steps.

Lemma 7
We can do online permutation routing of permutations in O(d?)
steps on the hypercube.

‘m PA 11 Some Networks =) =
©Harald Racke

Bitonic Sorter S,

Al

Al

Y

Sa-1

ASCEND/DESCEND Programs

Algorithm 11 ASCEND(procedure oper)
1: fordim=0tod -1

2: for all @ € [2]9 pardo

3: oper(a, a(dim), dim)

Algorithm 11 DESCEND (procedure oper)
1: fordim=d—-1to0

2: for all a € [2]% pardo

3: oper(a, a(dim), dim)

oper should only depend on the dimension and on values stored
in the respective processor pair (a,a(dim),V[ial,V[ia(dim)]).

oper should take constant time.

m PA 11 Some Networks
©Harald Racke

Algorithm 11 oper(a,a’, dim, T,, Ty)

1. if agim,...,ao = 04M*1 then
2: Ta =min{T,, Ty}

‘m PA 11 Some Networks
©Harald Racke

Algorithm 11 oper(a,a’, dim, T,, Ty)
1: if agim,...,a0 = 04im+1 then
2: Ta = min{Ta, Ta’}

Performing an ASCEND run with this operation computes the
minimum in processor 0.

‘m PA 11 Some Networks =)
©Harald Racke

Algorithm 11 oper(a,a’, dim, T,, Ty)
1: if agim,...,a0 = 04im+1 then
2: Ta = min{Ta, Ta’}

Performing an ASCEND run with this operation computes the
minimum in processor 0.

We can sort on M(2,d) by using d DESCEND runs.

‘m PA 11 Some Networks =)
©Harald Racke

Algorithm 11 oper(a,a’, dim, T,, T,)
1. if agim,...,ao = 04M*1 then
2: Ta = min{Ta, Ta’}

Performing an ASCEND run with this operation computes the
minimum in processor 0.

We can sort on M(2,d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run
followed by an ASCEND run.

m PA 11 Some Networks
©Harald Racke

We can perform an ASCEND/DESCEND run on a linear array
M(2%,1) in O(29) steps.

m PA 11 Some Networks =)
©Harald Racke

The CCC network is obtained from a hypercube by replacing
every node by a cycle of degree d.

» nodes {({,x) | x € [2]14,¢ € [d]}
» edges {{(£, %), £, x(£)} | x € [2]14,¢ € [d]}

constand degree

‘m PA 11 Some Networks =)
©Harald Racke

Lemma 8
Let d = 2. An ASCEND run of a hypercube M(2,d + k) can be
simulated on CCC(d) in O(d) steps.

m PA 11 Some Networks =)
©Harald Racke

The shuffle exchange network SE(d) is defined as follows

» nodes: V = [2]4

> edges:
E= {{xa, ax}|x e2],&e [2]d—1} U {{ao, xl} | & e [Z]d—l}

constand degree

Edges of the first type are called shuffle edges. Edges of the
second type are called exchange edges

‘m PA 11 Some Networks =) =
©Harald Racke

Shuffle Exchange Networks

100 101
.

000 Qreeveee o @ ZECRRPRE O 111
.
010 011

1000

0001 01005

0010

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 9
We can perform an ASCEND run of M(2,d) on SE(d) in O(d)
steps.

m PA 11 Some Networks =)
©Harald Racke

Simulations between Networks

m PA 11 Some Networks
©Harald Racke

Simulations between Networks

For the following observations we need to make the definition of
parallel computer networks more precise.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

For the following observations we need to make the definition of
parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

For the following observations we need to make the definition of
parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write
register.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

For the following observations we need to make the definition of
parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write
register.

In one (synchronous) step each neighbour of a processor P; can
write into P;’s write register or can read from P;’s read register.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

For the following observations we need to make the definition of
parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write
register.

In one (synchronous) step each neighbour of a processor P; can
write into P;’s write register or can read from P;’s read register.

Usually we assume that proper care has to be taken to avoid
concurrent reads and concurrent writes from/to the same
register.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

Definition 10
A configuration C; of processor P; is the complete description of

the state of P; including local memory, program counter,
read-register, write-register, etc.

‘m PA 11 Some Networks
©Harald Racke

Simulations between Networks

Definition 10

A configuration C; of processor P; is the complete description of
the state of P; including local memory, program counter,
read-register, write-register, etc.

Suppose a machine M is in configuration (Co,...,Cp-1),
performs t synchronous steps, and is then in configuration
C= (C(’),...,C;,_l).

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

Definition 10

A configuration C; of processor P; is the complete description of
the state of P; including local memory, program counter,
read-register, write-register, etc.

Suppose a machine M is in configuration (Co,...,Cp-1),
performs t synchronous steps, and is then in configuration
C= (C(’),...,C;,_l).

C;/ is called the t-th successor configuration of C for processor i.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

Definition 11
Let C = (Co,...,Cp-1) a configuration of M. A machine M’ with
q = p processors weakly simulates t steps of M with slowdown k
if
> in the beginning there are p non-empty processors sets
Ag,...,Ap-1 € M’ so that all processors in A; know Cj;

» after at most k - t steps of M’ there is a processor Q¥ that
knows the t-th successors configuration of C for processor
p;.

‘m PA 11 Some Networks =) =
©Harald Racke

Simulations between Networks

Definition 12
M’ simulates M with slowdown k if

» M’ weakly simulates machine M with slowdown k

» and every processor in A; knows the t-th successor
configuration of C for processor P;.

‘m PA 11 Some Networks
©Harald Racke

We have seen how to simulate an ASCEND/DESCEND run of the
hypercube M (2,d + k) on CCC(d) with d = 2K in O(d) steps.

Hence, we can simulate d + k steps (one ASCEND run) of the
hypercube in O(d) steps. This means slowdown O(1).

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 13

Suppose a network S with n processors can route any
permutation in time O(t(n)). Then S can simulate any constant
degree network M with at most n vertices with slowdown
O(t(n)).

‘m PA 11 Some Networks =) =
©Harald Racke

Map the vertices of M to vertices of S in an arbitrary way.

m PA 11 Some Networks
©Harald Racke

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with A + 1 colors, where A = @(1) denotes
the maximum degree.

‘m PA 11 Some Networks =) =
©Harald Racke

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with A + 1 colors, where A = @(1) denotes
the maximum degree.

Each color gives rise to a permutation.

‘m PA 11 Some Networks =)
©Harald Racke

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with A + 1 colors, where A = @(1) denotes
the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

‘m PA 11 Some Networks =) =
©Harald Racke

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with A + 1 colors, where A = @(1) denotes
the maximum degree.

Each color gives rise to a permutation.
We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step
of M by routing A + 1 permutations in S. This takes time t(n).

‘m PA 11 Some Networks =) =
©Harald Racke

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with A + 1 colors, where A = @(1) denotes
the maximum degree.

Each color gives rise to a permutation.
We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step
of M by routing A + 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of §
throughout the simulation.

m PA 11 Some Networks
©Harald Racke

Lemma 14
Suppose a network S with n processors can sort n numbers in
time O(t(n)). Then S can simulate any network M with at most

n vertices with slowdown O(t(n)).

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 15
There is a constant degree network on ©(n'*€) nodes that can
simulate any constant degree network with slowdown ©(1).

‘m PA 11 Some Networks =) =
©Harald Racke

Suppose we allow concurrent reads, this means in every step all
neighbours of a processor P; can read P;’s read register.

‘m PA 11 Some Networks =) =
©Harald Racke

Suppose we allow concurrent reads, this means in every step all
neighbours of a processor P; can read P;’s read register.

Lemma 16
A constant degree network M that can simulate any n-node
network has slowdown O (logn) (independent of the size of M).

‘m PA 11 Some Networks =) =
©Harald Racke

We show the lemma for the following type of simulation.

» There are representative sets Ag for every step t that specify
which processors of M simulate processor P; in step t
(know the configuration of P; after the t-th step).

» The representative sets for different processors are disjoint.
» forallie {1,...,n} and steps t, Al = 0.

‘m PA 11 Some Networks =) =
©Harald Racke

We show the lemma for the following type of simulation.

» There are representative sets Ag for every step t that specify
which processors of M simulate processor P; in step t
(know the configuration of P; after the t-th step).

» The representative sets for different processors are disjoint.
» forallie {1,...,n} and steps t, Al = 0.

This is a step-by-step simulation.

‘m PA 11 Some Networks =) =
©Harald Racke

Suppose processor P; reads from processor P, in step t.

m PA 11 Some Networks
©Harald Racke

Suppose processor P; reads from processor Pj, in step .

Every processor Q € M with Q Aﬁ“ must have a path to a
processor Q' € Al and to Q" € A;i.

‘m PA 11 Some Networks =)
©Harald Racke

Suppose processor P; reads from processor Pj, in step .

Every processor Q € M with Q Aﬁ“ must have a path to a
processor Q' € Al and to Q" € A;i.

Let k; be the largest distance (maximized over all i, j;).

‘m PA 11 Some Networks =)
©Harald Racke

Suppose processor P; reads from processor Pj, in step .

Every processor Q € M with Q Aﬁ“ must have a path to a
processor Q' € Al and to Q" € A;i.

Let k; be the largest distance (maximized over all i, j;).

Then the simulation of step t takes time at least k;.

‘m PA 11 Some Networks =)
©Harald Racke

Suppose processor P; reads from processor Pj, in step .

Every processor Q € M with Q Aﬁ“ must have a path to a
processor Q' € Al and to Q" € A;i.

Let k; be the largest distance (maximized over all i, j;).
Then the simulation of step t takes time at least k;.

The slowdown is at least

'\\M—‘

¢
; ¢

‘m PA 11 Some Networks =)
©Harald Racke

We show

» The simulation of a step takes at least time ylogn, or

T

PA 11 Some Networks =)

©Harald Racke

We show

» The simulation of a step takes at least time ylogn, or

» the size of the representative sets shrinks by a lot

1
2 IAT = 2 D 1A
i i

T

PA 11 Some Networks &

©Harald Racke

Suppose there is no pair (i, j) such that i reading from j
requires time y logn.

m PA 11 Some Networks
©Harald Racke

Suppose there is no pair (i, j) such that i reading from j
requires time y logn.

» For every i the set I (A;) contains a node from A;.

‘m PA 11 Some Networks
©Harald Racke

Suppose there is no pair (i, j) such that i reading from j
requires time y logn.
» For every i the set I (A;) contains a node from A;.

» Hence, there must exist a j; such that I (A;) contains at
most

|A;] - 2k - |A;| - c3k

Cil|:= <
1G] n-1 n

processors from [A;; |

‘m PA 11 Some Networks =)
©Harald Racke

If we choose that i reads from j; we get

v

m PA 11 Some Networks
©Harald Racke

If we choose that i reads from j; we get

|AY < ICj,] - ¢k

m PA 11 Some Networks
©Harald Racke

If we choose that i reads from j; we get

A

|A]l < 1Cj,| - c*

IA

c
n

k |A;] - c3k

m PA 11 Some Networks
©Harald Racke

If we choose that i reads from j; we get

|ALl < |Cj,l - c*
<ck. 14q] - ¢
B n
1
= ﬁlA” eals

m PA 11 Some Networks
©Harald Racke

If we choose that i reads from j; we get

|ALl < |Cj,l - c*
<ck. 14q] - ¢
B n
1
= ﬁlA” eals

m PA 11 Some Networks
©Harald Racke

If we choose that i reads from j; we get

|ALl < |Cj,l - c*
<ck. 14q] - ¢
B n
1
= ﬁ'A” eals

Choosing k = ©(logn) gives that this is at most |A;|/n€.

‘m PA 11 Some Networks
©Harald Racke

Let £ be the total number of steps and s be the number of short
steps when k; < ylogn.

m PA 11 Some Networks =) =
©Harald Racke

Let £ be the total number of steps and s be the number of short
steps when k; < ylogn.

In a step of time k; a representative set can at most increase by
ki+1
c .

‘m PA 11 Some Networks =) =
©Harald Racke

Let £ be the total number of steps and s be the number of short
steps when k; < ylogn.

In a step of time k; a representative set can at most increase by
kt+1
c .

Let hy denote the number of representatives after step £.

‘m PA 11 Some Networks =) =
©Harald Racke

1 s k n
. t+1 . €+Ztkt
nshgsho(ng) [T ¢ s 5 ¢
telong

m PA 11 Some Networks
©Harald Racke

nshgsho()S [] kett<—

1
n€ nES
telong

If ¢ k¢ = €(51og. n — 1), we are done. Otw.

n< nl—es+#§

. C€+Zt kt

m PA 11 Some Networks
©Harald Racke

n< he () l_[th+1 < l . C€+Ztkt
nES
telong

If ¢ k¢ = €(51og. n — 1), we are done. Otw.

n< nl—es+€§

This gives s < /2 .

m PA 11 Some Networks
©Harald Racke

n
n =< he = hO() l_[th+1 F . C€+Zt ke
telong

If ¢ k¢ = €(51og. n — 1), we are done. Otw.

n< nl—es+€§

This gives s < /2 .

Hence, at most 50% of the steps are short.

‘m PA 11 Some Networks
©Harald Racke

Deterministic Online Routing

Lemma 17
A permutation on an n X n-mesh can be routed online in O(n)
steps.

m PA 11 Some Networks =)
©Harald Racke

Deterministic Online Routing

Definition 18 (Oblivious Routing)
Specify a path-system W with a path P, , between u and v for
every pair {u,v} € VxV.

A packet with source u and destination v moves along path Py 4.

‘m PA 11 Some Networks =)
©Harald Racke

Deterministic Online Routing

Definition 19 (Oblivious Routing)

Specify a path-system W with a path P, , between u and v for
every pair {u,v} € VxV.

Definition 20 (node congestion)

For a given path-system the node congestion is the maximum
number of path that go through any node v € V.

Definition 21 (edge congestion)

For a given path-system the edge congestion is the maximum
number of path that go through any edge e € E.

‘m PA 11 Some Networks =) =
©Harald Racke

Deterministic Online Routing

Definition 22 (dilation)
For a given path system the dilation is the maximum length of a
path.

m PA 11 Some Networks =) =
©Harald Racke

Lemma 23

Any oblivious routing protocol requires at least max{Cyr, Dy}
steps, where Cy and Dy, are the congestion and dilation,
respectively, of the path-system used. (node congestion or edge
congestion depending on the communication model)

Lemma 24
Any reasonable oblivious routing protocol requires at most
O(Dy - Cy) steps (unbounded buffers).

‘m PA 11 Some Networks =) =
©Harald Racke

Theorem 25 (Borodin, Hopcroft)

For any path system W there exists a permutation t:V — V

and an edge e € E such that at least Q(/n/A) of the paths go
through e.

‘m PA 11 Some Networks =) =
©Harald Racke

Let WU = {Py,u | u e V}

We say that an edge e is z-popular for v if at least z paths from
‘W, contain e.

m PA 11 Some Networks =) =
©Harald Racke

For any node v there are many edges that are are quite popular
for v.

V| x |E|-matrix A(z):

1 eis z-popular for v
0 otherwise

Ape (z) = {

Define

Ay(z) = zAv,e (2)
e

Ae(z) = ZAv,e(Z)

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 26

n-1
Letz < A -

For every node v € V there exist at least ﬁ edges that are z
popular for v. This means

n
AU(Z) = E

‘m PA 11 Some Networks =)
©Harald Racke

Lemma 27
There exists an edge e’ that is z-popular for at least z nodes
with z = Q(/nA).

%Ae(z) ZAU z) = ZAZ

There must exist an edge e’

n? n
Ae(2) 2 [IEI : ZAZ—‘ = [ZAZZ]

where the last step follows from |E| < An.

‘m PA 11 Some Networks =)
©Harald Racke

We choose z such that z = 535 (i.e., z = 11/ (v24)).

This means e’ is [z]-popular for [z] nodes.

We can construct a permutation such that z paths go through e’.

‘m PA 11 Some Networks =) =
©Harald Racke

Deterministic oblivious routing may perform very poorly.

What happens if we have a random routing problem in a
butterfly?

‘m PA 11 Some Networks
©Harald Racke

Suppose every source on level 0 has p packets, that are routed
to random destinations.

m PA 11 Some Networks =)
©Harald Racke

Suppose every source on level 0 has p packets, that are routed
to random destinations.

How many packets go over node v on level i?

‘m PA 11 Some Networks =)
©Harald Racke

Suppose every source on level 0 has p packets, that are routed
to random destinations.

How many packets go over node v on level i?

From v we can reach 24 /21 different targets.

‘m PA 11 Some Networks =) =
©Harald Racke

Suppose every source on level 0 has p packets, that are routed
to random destinations.

How many packets go over node v on level i?
From v we can reach 24 /21 different targets.

Hence,
pL U |
Pr[packet goes over v] < >d = o

‘m PA 11 Some Networks =) =
©Harald Racke

Expected number of packets:

i1
E[packets over v] =p - 2" - —

since only p2t packets can reach v.

21

=p

m PA 11 Some Networks
©Harald Racke

Expected number of packets:

i1
E[packets over v] =p - 2" - —

since only p2t packets can reach v.

But this is trivial.

21

=p

‘m PA 11 Some Networks
©Harald Racke

What is the probability that at least » packets go through v.

Pr[at least » path through v]

m PA 11 Some Networks =)
©Harald Racke

What is the probability that at least » packets go through v.

.0l r
Pr[at least r path through v] < (p r2 > . (%)

m PA 11 Some Networks &
©Harald Racke

What is the probability that at least » packets go through v.

.0l r
Pr[at least v path through v] < (p r2 > . (%)

() 6)

m PA 11 Some Networks a
©Harald Racke

What is the probability that at least » packets go through v.

v 2t

(23

.0l r
Pr[at least path through v] < (p 2 > . (i)

m PA 11 Some Networks a
©Harald Racke

What is the probability that at least » packets go through v.

.0l r
Pr[at least r path through v] < (p r2) . (%)

Pr{there exists a node v sucht that at least » path through v]

‘m PA 11 Some Networks =) =
©Harald Racke

What is the probability that at least » packets go through v.

.0l r
Pr[at least r path through v] < (p r2) . (%)

; r
< p2t-e\) <l>
v 2t
- (%)
\7r
Pr{there exists a node v sucht that at least » path through v]

<d2?. (K)T
- 4

‘m PA 11 Some Networks =) =
©Harald Racke

Pr(there exists a node v sucht that at least path through v]

T

PA 11 Some Networks =) -

©Harald Racke

Pr(there exists a node v sucht that at least path through v]

<d2®. (g)r
N 'a

T

PA 11 Some Networks =) -

©Harald Racke

Pr(there exists a node v sucht that at least path through v]

<d2®. (g)r
N 'a

T

PA 11 Some Networks =) -

©Harald Racke

Pr(there exists a node v sucht that at least path through v]
<d2?. (ﬁ)r
- v

Choose r as 2ep + (£ + 1)d +logd = O(p +1og N), where N is
number of sources in BF(d).

‘m PA 11 Some Networks =) =
©Harald Racke

Pr(there exists a node v sucht that at least path through v]
<d2?. (ﬁ)r
- v

Choose r as 2ep + (£ + 1)d +logd = O(p +1og N), where N is
number of sources in BF(d).

. . 1
Pr{exists node v with more than v paths over v] < =7

‘m PA 11 Some Networks =) =
©Harald Racke

Scheduling Packets

T,
©Harald Racke

11 Some Networks

Scheduling Packets

Assume that in every round a node may forward at most one
packet but may receive up to two.

‘m PA 11 Some Networks =)
©Harald Racke

Scheduling Packets

Assume that in every round a node may forward at most one
packet but may receive up to two.

We select a random rank Ry € [k]. Whenever, we forward a
packet we choose the packet with smaller rank. Ties are broken
according to packet id.

‘m PA 11 Some Networks =) =
©Harald Racke

Scheduling Packets

Assume that in every round a node may forward at most one
packet but may receive up to two.

We select a random rank Ry € [k]. Whenever, we forward a
packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol

‘m PA 11 Some Networks =) =
©Harald Racke

Definition 28 (Delay Sequence of length s)
» delay path W

m PA 11 Some Networks
©Harald Racke

Definition 28 (Delay Sequence of length s)

» delay path W

» lengths €g, f1,...,¥s, with o =1, £1,...,€s = 0 lengths of
delay-free sub-paths

m PA 11 Some Networks =)
©Harald Racke

Definition 28 (Delay Sequence of length s)

» delay path W

» lengths €g, f1,...,¥s, with o =1, £1,...,€s = 0 lengths of
delay-free sub-paths

» collision nodes vg,V1,..., Vs, Uss1

m PA 11 Some Networks =)
©Harald Racke

Definition 28 (Delay Sequence of length s)

» delay path W

» lengths €g, f1,...,¥s, with o =1, £1,...,€s = 0 lengths of
delay-free sub-paths

» collision nodes vg,V1,..., Vs, Uss1

» collision packets Py,...,Ps

m PA 11 Some Networks =)
©Harald Racke

Properties

» rank(Po) = rank(Py) = - - -

> rank(Ps)

T

PA 11 Some Networks

©Harald Racke

Properties

T

» rank(Pg) = rank(P;) = - - - = rank(Ps)
> Sioli=d
PA 11 Some Networks

©Harald Racke

Properties

» rank(Pg) = rank(P;) = - - - = rank(Ps)

> Yioli=d

> if the routing takes d + s steps than the delay sequence has
length s

T

PA 11 Some Networks & =
©Harald Racke

Definition 29 (Formal Delay Sequence)

» a path W of length d from a source to a target

m PA 11 Some Networks
©Harald Racke

Definition 29 (Formal Delay Sequence)

» a path W of length d from a source to a target
» sintegers £o > 1,¥1,...,0s>0and >X; ¥ =d

m PA 11 Some Networks
©Harald Racke

Definition 29 (Formal Delay Sequence)

» a path W of length d from a source to a target
» sintegers £o > 1,¥1,...,0s>0and >X; ¥ =d

» nodes vyg,... Vs, Vsy1 on W with v; being on level
d—ty— -~ iy

‘m PA 11 Some Networks
©Harald Racke

Definition 29 (Formal Delay Sequence)

v

a path W of length d from a source to a target
sintegers o =1, 41,...,4s>0and X;_y¥;=d

» nodes vyg,... Vs, Vsy1 on W with v; being on level
d—Lby—-- =iy

s + 1 packets Py,..., P, where P; is a packet with path
through v; and v;_;

v

v

‘m PA 11 Some Networks =)
©Harald Racke

Definition 29 (Formal Delay Sequence)

v

a path W of length d from a source to a target
sintegers o =1, 41,...,4s>0and X;_y¥;=d

» nodes vyg,... Vs, Vsy1 on W with v; being on level
d—ty— -~ iy

s + 1 packets Py,..., P, where P; is a packet with path
through v; and v;_;

v

v

v

numbers Rs < R;_1 <--- <Ry

‘m PA 11 Some Networks =)
©Harald Racke

We say a formal delay sequence is active if rank(P;) = k; holds
for all 1.

m PA 11 Some Networks =)
©Harald Racke

We say a formal delay sequence is active if rank(P;) = k; holds
for all 1.

Let N5 be the number of formal delay sequences of length at
most s. Then

. N
Pr[routing needs at least d + s steps] < ks+S1

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 30

N, < (ZeC(s +k

s+1

))s+1

T

PA
©Harald Racke

11 Some Networks

Lemma 30

N <
S(s+1

» there are N2 ways to choose W

2eC(s+ k

))5+1

T

PA 11 Some Networks
©Harald Racke

Lemma 30

2eC(s + k))”l

N <
S(s+1

» there are N2 ways to choose W

> there are (H‘f_l) ways to choose ¥;’s with >;_o¢; =d

T

PA 11 Some Networks &

©Harald Racke

Lemma 30

2eC(s + k))”l

N <
5(s+1

» there are N2 ways to choose W

> there are (H‘f_l) ways to choose ¥;’s with >;_o¢; =d

» the collision nodes are fixed

T

PA 11 Some Networks &

©Harald Racke

Lemma 30

s+1
N, < (2eC(s+k))
s+1

» there are N2 ways to choose W

> there are (”‘f‘l) ways to choose ¥;’s with >;_o¢; =d

» the collision nodes are fixed

» there are at most CS*! ways to choose the collision packets
where C is the node congestion

T

PA 11 Some Networks & =
©Harald Racke

Lemma 30

2eC(s + k))”l

N <
S(S—i—l

» there are N2 ways to choose W

> there are (”‘f‘l) ways to choose ¥;’s with >;_o¢; =d

» the collision nodes are fixed

» there are at most CS*! ways to choose the collision packets

where C is the node congestion

> there are at most (ii’l‘

O<ks=<---=<ko<k

) ways to choose

T

PA 11 Some Networks & =
©Harald Racke

Hence the probability that the routing takes more than d + s
steps is at most

3 (2e-C-(s+k)*"!
N ((s+ Dk)

‘m PA 11 Some Networks =)
©Harald Racke

Hence the probability that the routing takes more than d + s
steps is at most

2e-C-(s+ k))5+1

Na((s+ 1k

We choose s = 8¢C — 1+ (£ + 3)d and k = s + 1. This gives that
the probability is at most ﬁ.

‘m PA 11 Some Networks =) =
©Harald Racke

» With probability 1 — ﬁ the random routing problem has
congestion at most O(p + ¥1d).

T

PA 11 Some Networks &
©Harald Racke

» With probability 1 — ﬁ the random routing problem has
congestion at most O(p + ¥1d).

» With probability 1 — Nllz the packet scheduling finishes in at
most O(C + ¥£»d) steps.

T

PA

11 Some Networks & =
©Harald Racke

» With probability 1 — ﬁ the random routing problem has
congestion at most O(p + ¥1d).

» With probability 1 — Nllz the packet scheduling finishes in at
most O(C + ¥£»d) steps.

T

PA

11 Some Networks & =
©Harald Racke

» With probability 1 — ﬁ the random routing problem has
congestion at most O(p + ¥1d).

» With probability 1 — Nllz the packet scheduling finishes in at
most O(C + ¥£»d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

‘m PA 11 Some Networks =) =
©Harald Racke

» With probability 1 — ﬁ the random routing problem has
congestion at most O(p + ¥1d).

» With probability 1 — Nllz the packet scheduling finishes in at
most O(C + ¥£»d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

‘m PA 11 Some Networks =) =
©Harald Racke

Valiants Trick

T,
©Harald Racke

11 Some Networks

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used
> all routing paths are of the same length d

> there are a polynomial number of delay paths

‘m PA 11 Some Networks
©Harald Racke

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used
» all routing paths are of the same length d

> there are a polynomial number of delay paths

Choose paths as follows:
> route from source to random destination on target level
> route to real target column (albeit on source level)

> route to target

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used
» all routing paths are of the same length d
> there are a polynomial number of delay paths

Choose paths as follows:
> route from source to random destination on target level
> route to real target column (albeit on source level)

> route to target

All phases run in time O(p + d) with high probability.

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)

‘m PA 11 Some Networks
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)

» commodities (s;, t;), i€ {1,...,k}

‘m PA 11 Some Networks
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)
» commodities (s;, t;), i€ {1,...,k}
» a multicommodity flow is a flow f:E x {1,...,k} - R*

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Multicommodity Flow Problem
» undirected (weighted) graph G = (V,E,c)
» commodities (s;, t;), i€ {1,...,k}

» a multicommodity flow is a flow f:E x {1,...,k} - R*
» for all edges e € E: ; fi(e) < c(e)

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)

» commodities (s;, t;), i€ {1,...,k}

» a multicommodity flow is a flow f:E x {1,...,k} - R*
» for all edges e € E: ; fi(e) < c(e)
» for all nodes v € V' \ {s;,t;}:

zu:(u,v)eE fillu,v)) = Zw:(v,w)EE fi((v,w))

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)

» commodities (s;, t;), i€ {1,...,k}

» a multicommodity flow is a flow f:E x {1,...,k} - R*
» for all edges e € E: ; fi(e) < c(e)
» for all nodes v € V' \ {s;,t;}:

zu:(u,v)eE fillu,v)) = Zw:(v,w)EE fi((v,w))

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)
» commodities (s;, t;), i€ {1,...,k}
» a multicommodity flow is a flow f:E x {1,...,k} - R*
» for all edges e € E: ; fi(e) < c(e)
» for all nodes v e V' \ {s;, t;}:
Dwuwee Jilw,v) = X wee fil(v,w))
Goal A (Maximum Multicommodity Flow)
maximize > ; Ze:(si,x)e]:" fi(e)

‘m PA 11 Some Networks =)
©Harald Racke

Valiants Trick

Multicommodity Flow Problem

» undirected (weighted) graph G = (V,E,c)
» commodities (s;, t;), i€ {1,...,k}
» a multicommodity flow is a flow f:E x {1,...,k} - R*
» for all edges e € E: ; fi(e) < c(e)
» for all nodes v e V' \ {s;, t;}:
Dwuwee Jilw,v) = X wee fil(v,w))
Goal A (Maximum Multicommodity Flow)
maximize > ; Ze:(si,x)e]:" fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize min; >, s, x)ck fi(e) /d; (throughput fraction), where
d; is demand for commodity i

‘m PA 11 Some Networks =) =
©Harald Racke

Valiants Trick

A Balanced Multicommodity Flow Problem is a concurrent
multicommodity flow problem in which incoming and outgoing
flow is equal to

cv)y= > cle)

e=(v,x)€EE

m PA 11 Some Networks =) =
©Harald Racke

Valiants Trick

For a multicommodity flow S we assume that we have a
decomposition of the flow(s) into flow-paths.

‘m PA 11 Some Networks
©Harald Racke

Valiants Trick

For a multicommodity flow S we assume that we have a
decomposition of the flow(s) into flow-paths.

We use C(S) to denote the congestion of the flow problem
(inverse of througput fraction), and D(S) the length of the
longest routing path.

‘m PA 11 Some Networks =)
©Harald Racke

For a network G = (V,E, c) we define the characteristic flow

problem via

» demands dy v = %

m PA 11 Some Networks =)
©Harald Racke

For a network G = (V,E, c) we define the characteristic flow

problem via

» demands dy v = %

Suppose the characteristic flow problem has a solution S with
C(S) <Fand D(S) <F.

‘m PA 11 Some Networks =)
©Harald Racke

Definition 31
A (randomized) oblivious routing scheme is given by a path
system 2 and a weight function w such that

> w(p) =1

pEPs;

‘m PA 11 Some Networks =)
©Harald Racke

Construct an oblivious routing scheme from S as follows:

> let fx, be the flow between x and y in S

1c(x)e(y)

Sx,y =2 dxy/C(S) =2dxy/F = Ea

» for p € Py set w(p) = folfx,y

gives an oblivious routing scheme.

‘m PA 11 Some Networks
©Harald Racke

Valiants Trick

We apply this routing scheme twice:

» first choose a path from P, where v is chosen uniformly
according to c(v)/c(V)

» then choose path according to Py +

If the input flow problem/packet routing problem is balanced
doing this randomization results in flow solution S (twice).

‘m PA 11 Some Networks =) =
©Harald Racke

Valiants Trick

We apply this routing scheme twice:

» first choose a path from P, where v is chosen uniformly
according to c(v)/c(V)

» then choose path according to Py +

If the input flow problem/packet routing problem is balanced
doing this randomization results in flow solution S (twice).

Hence, we have an oblivious scheme with congestion and
dilation at most 2F for (balanced inputs).

‘m PA 11 Some Networks =) =
©Harald Racke

Example: hypercube.

TN,
©Harald Racke

11 Some Networks

Oblivious Routing for the Mesh

We can route any permutation on an n X n mesh in @(n) steps,
by x-y routing. Actually O(d) steps where d is the largest
distance between a source-target pair.

‘m PA 11 Some Networks =) =
©Harald Racke

Oblivious Routing for the Mesh

We can route any permutation on an n X n mesh in @(n) steps,
by x-y routing. Actually O(d) steps where d is the largest
distance between a source-target pair.

What happens if we do not have a permutation?

‘m PA 11 Some Networks =) =
©Harald Racke

Oblivious Routing for the Mesh

We can route any permutation on an n X n mesh in @(n) steps,
by x-y routing. Actually O(d) steps where d is the largest
distance between a source-target pair.

What happens if we do not have a permutation?

X — y routing may generate large congestion if some pairs have
a lot of packets.

‘m PA 11 Some Networks =) =
©Harald Racke

Oblivious Routing for the Mesh

We can route any permutation on an n X n mesh in @(n) steps,
by x-y routing. Actually O(d) steps where d is the largest
distance between a source-target pair.

What happens if we do not have a permutation?

X — y routing may generate large congestion if some pairs have
a lot of packets.

Valiants trick may create a large dilation.

‘m PA 11 Some Networks =) =
©Harald Racke

Let for a multicommodity flow problem P Cop(P) be the
optimum congestion, and Dop(P) be the optimum dilation (by
perhaps different flow solutions).

‘m PA 11 Some Networks =)
©Harald Racke

Let for a multicommodity flow problem P Cop(P) be the
optimum congestion, and Dop(P) be the optimum dilation (by
perhaps different flow solutions).

Lemma 32

There is an oblivious routing scheme for the mesh that obtains a
flow solution S with C(S) = O(Copt(P) logn) and

D(S) = O(Dopt(P)).

‘m PA 11 Some Networks =) =
©Harald Racke

Lemma 33
For any oblivious routing scheme on the mesh there is a demand
P such that routing P will give congestion Q(logn - Copt).

‘m PA 11 Some Networks =) =
©Harald Racke

	Some Networks

