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ñ node set V = {(`, x̄) | x̄ ∈ [2]d, ` ∈ [d+ 1]}, where
x̄ = x0 x1 . . . xd−1 is a bit-string of length d

ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

Sometimes the first and last level are identified.



Beneš Network
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ñ node set V = {(`, x̄) | x̄ ∈ [2]d, ` ∈ {−d, . . . , d}}
ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

∪ {{(−`, x̄), (` − 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}



n-ary Bufferfly Network BF(n, d)
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ñ node set V = {(`, x̄) | x̄ ∈ [n]d, ` ∈ [d+ 1]}, where
x̄ = x0 x1 . . . xd−1 is a bit-string of length d

ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [n]d, x′i = xi for i ≠ `}



Permutation Network PN(n, d)
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ñ There is an n-ary version of the Benes network (2 n-ary
butterflies glued at level 0).

ñ identifying levels 0 and 1 (or 0 and −1) gives PN(n,d).



The d-dimensional mesh M(n, d)

ñ node set V = [n]d

ñ edge set E = {{(x0, . . . , xi, . . . , xd−1), (x0, . . . , xi + 1, . . . , xd−1)} |
xs ∈ [n] for s ∈ [d] \ {i}, xi ∈ [n− 1]}



Remarks

M(2, d) is also called d-dimensional hypercube.

M(n,1) is also called linear array of length n.
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Permutation Routing

Lemma 1

On the linear array M(n,1) any permutation can be routed

online in 2n steps with buffersize 3.
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Permutation Routing

Lemma 2

On the Beneš network any permutation can be routed offline in

2d steps between the sources level (+d) and target level (−d).
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Recursive Beneš Network

B(d − 1)

B(d − 1)



Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.
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Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.
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Lemma 3

On a d-dimensional mesh with sidelength n we can route any

permutation (offline) in 4dn steps.
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We can simulate the algorithm for the n-ary Beneš Network.

Each step can be simulated by routing on disjoint linear arrays.

This takes at most 2n steps.
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We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.
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Lemma 4

We can route any permutation on the Beneš network in O(d)
steps with constant buffer size.

The same is true for the butterfly network.
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The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.
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Lemma 5

We can do offline permutation routing of (partial) permutations

in 2d steps on the hypercube.

Lemma 6

We can sort on the hypercube M(2, d) in O(d2) steps.

Lemma 7

We can do online permutation routing of permutations in O(d2)
steps on the hypercube.
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Bitonic Sorter Sd

Sd−1

S′d−1



ASCEND/DESCEND Programs

Algorithm 11 ASCEND(procedure oper)
1: for dim = 0 to d− 1

2: for all ā ∈ [2]d pardo

3: oper(ā, ā(dim),dim)

Algorithm 11 DESCEND(procedure oper)
1: for dim = d− 1 to 0

2: for all ā ∈ [2]d pardo

3: oper(ā, ā(dim),dim)

oper should only depend on the dimension and on values stored

in the respective processor pair (ā, ā(dim), V[ā], V[ā(dim)]).

oper should take constant time.
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Algorithm 11 oper(a,a′,dim, Ta, Ta′)
1: if adim, . . . , a0 = 0dim+1 then

2: Ta =min{Ta, Ta′}

Performing an ASCEND run with this operation computes the

minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run

followed by an ASCEND run.
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We can perform an ASCEND/DESCEND run on a linear array

M(2d,1) in O(2d) steps.
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The CCC network is obtained from a hypercube by replacing

every node by a cycle of degree d.

ñ nodes {(`, x̄) | x̄ ∈ [2]d, ` ∈ [d]}
ñ edges {{(`, x̄), (`, x̄(`)} | x ∈ [2]d, ` ∈ [d]}

constand degree
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Lemma 8

Let d = 2k. An ASCEND run of a hypercube M(2, d+ k) can be

simulated on CCC(d) in O(d) steps.
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The shuffle exchange network SE(d) is defined as follows

ñ nodes: V = [2]d

ñ edges:
E =

{
{xᾱ, ᾱx} | x ∈ [2], ᾱ ∈ [2]d−1

}
∪
{
{ᾱ0, ᾱ1} | ᾱ ∈ [2]d−1

}

constand degree

Edges of the first type are called shuffle edges. Edges of the

second type are called exchange edges
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Shuffle Exchange Networks

010 011

100 101

000 110 111001

1000 1001 1100 1101

0010 0011 0110 0111

11110000 0001 111010110100
0101 1010
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Lemma 9

We can perform an ASCEND run of M(2, d) on SE(d) in O(d)
steps.
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Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.
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Simulations between Networks

Definition 10

A configuration Ci of processor Pi is the complete description of

the state of Pi including local memory, program counter,

read-register, write-register, etc.

Suppose a machine M is in configuration (C0, . . . , Cp−1),
performs t synchronous steps, and is then in configuration

C = (C′0, . . . , C′p−1).

C′i is called the t-th successor configuration of C for processor i.
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Simulations between Networks

Definition 11

Let C = (C0, . . . , Cp−1) a configuration of M. A machine M′ with

q ≥ p processors weakly simulates t steps of M with slowdown k
if

ñ in the beginning there are p non-empty processors sets

A0, . . . , Ap−1 ⊆ M′ so that all processors in Ai know Ci;
ñ after at most k · t steps of M′ there is a processor Q(i) that

knows the t-th successors configuration of C for processor

Pi.
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Simulations between Networks

Definition 12

M′ simulates M with slowdown k if

ñ M′ weakly simulates machine M with slowdown k
ñ and every processor in Ai knows the t-th successor

configuration of C for processor Pi.
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We have seen how to simulate an ASCEND/DESCEND run of the

hypercube M(2, d+ k) on CCC(d) with d = 2k in O(d) steps.

Hence, we can simulate d+ k steps (one ASCEND run) of the

hypercube in O(d) steps. This means slowdown O(1).
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Lemma 13

Suppose a network S with n processors can route any

permutation in time O(t(n)). Then S can simulate any constant

degree network M with at most n vertices with slowdown

O(t(n)).
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Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.
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Lemma 14

Suppose a network S with n processors can sort n numbers in

time O(t(n)). Then S can simulate any network M with at most

n vertices with slowdown O(t(n)).
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Lemma 15

There is a constant degree network on O(n1+ε) nodes that can

simulate any constant degree network with slowdown O(1).
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Suppose we allow concurrent reads, this means in every step all

neighbours of a processor Pi can read Pi’s read register.

Lemma 16

A constant degree network M that can simulate any n-node

network has slowdown O(logn) (independent of the size of M).
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We show the lemma for the following type of simulation.

ñ There are representative sets Ati for every step t that specify

which processors of M simulate processor Pi in step t
(know the configuration of Pi after the t-th step).

ñ The representative sets for different processors are disjoint.

ñ for all i ∈ {1, . . . , n} and steps t, Ati ≠ �.

This is a step-by-step simulation.
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Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt
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We show

ñ The simulation of a step takes at least time γ logn, or

ñ the size of the representative sets shrinks by a lot

∑
i
|At+1
i | ≤ 1

nε
∑
i
|Ati|
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Suppose there is no pair (i, j) such that i reading from j
requires time γ logn.

ñ For every i the set Γ2k(Ai) contains a node from Aj.
ñ Hence, there must exist a ji such that Γ2k(Ai) contains at

most

|Cji| := |Ai| · c
2k

n− 1
≤ |Ai| · c

3k

n
.

processors from |Aji|
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If we choose that i reads from ji we get

|A′i|

≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.
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Let ` be the total number of steps and s be the number of short

steps when kt < γ logn.

In a step of time kt a representative set can at most increase by

ckt+1.

Let h` denote the number of representatives after step `.
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n ≤ h` ≤ h0

( 1
nε
)s ∏
t∈long

ckt+1 ≤ n
nεs

· c`+
∑
t kt

If
∑
t kt ≥ `( ε2 logc n− 1), we are done. Otw.

n ≤ n1−εs+` ε2

This gives s ≤ `/2 .

Hence, at most 50% of the steps are short.
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Deterministic Online Routing

Lemma 17

A permutation on an n×n-mesh can be routed online in O(n)
steps.
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Deterministic Online Routing

Definition 18 (Oblivious Routing)

Specify a path-system W with a path Pu,v between u and v for

every pair {u,v} ∈ V × V .

A packet with source u and destination v moves along path Pu,v .
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Deterministic Online Routing

Definition 19 (Oblivious Routing)

Specify a path-system W with a path Pu,v between u and v for

every pair {u,v} ∈ V × V .

Definition 20 (node congestion)

For a given path-system the node congestion is the maximum

number of path that go through any node v ∈ V .

Definition 21 (edge congestion)

For a given path-system the edge congestion is the maximum

number of path that go through any edge e ∈ E.
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Deterministic Online Routing

Definition 22 (dilation)

For a given path system the dilation is the maximum length of a

path.
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Lemma 23

Any oblivious routing protocol requires at least max{Cf ,Df }
steps, where Cf and Df , are the congestion and dilation,

respectively, of the path-system used. (node congestion or edge

congestion depending on the communication model)

Lemma 24

Any reasonable oblivious routing protocol requires at most

O(Df · Cf ) steps (unbounded buffers).
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Theorem 25 (Borodin, Hopcroft)

For any path system W there exists a permutation π : V → V
and an edge e ∈ E such that at least Ω(

√
n/∆) of the paths go

through e.
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Let Wv = {Pv,u | u ∈ V}.

We say that an edge e is z-popular for v if at least z paths from

Wv contain e.
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For any node v there are many edges that are are quite popular

for v.

|V | × |E|-matrix A(z):

Av,e(z) =
{

1 e is z-popular for v
0 otherwise

Define

ñ

Av(z) =
∑
e
Av,e(z)

ñ

Ae(z) =
∑
v
Av,e(z)
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Lemma 26

Let z ≤ n−1
∆ .

For every node v ∈ V there exist at least n
2∆z edges that are z

popular for v. This means

Av(z) ≥
n

2∆z
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Lemma 27

There exists an edge e′ that is z-popular for at least z nodes

with z = Ω(√n∆).

∑
e
Ae(z) =

∑
v
Av(z) ≥

n2

2∆z

There must exist an edge e′

Ae′(z) ≥
⌈

n2

|E| · 2∆z

⌉
≥
⌈
n

2∆2z

⌉

where the last step follows from |E| ≤ ∆n.
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We choose z such that z = n
2∆2z (i.e., z = √n/(

√
2∆)).

This means e′ is dze-popular for dze nodes.

We can construct a permutation such that z paths go through e′.
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Deterministic oblivious routing may perform very poorly.

What happens if we have a random routing problem in a

butterfly?
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Suppose every source on level 0 has p packets, that are routed

to random destinations.

How many packets go over node v on level i?

From v we can reach 2d/2i different targets.

Hence,

Pr[packet goes over v] ≤ 2d−i

2d
= 1

2i
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Expected number of packets:

E[packets over v] = p · 2i · 1
2i
= p

since only p2i packets can reach v.

But this is trivial.
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What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
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Scheduling Packets

Assume that in every round a node may forward at most one

packet but may receive up to two.

We select a random rank Rp ∈ [k]. Whenever, we forward a

packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol
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Definition 28 (Delay Sequence of length s)

ñ delay path W
ñ lengths `0, `1, . . . , `s , with `0 ≥ 1, `1, . . . , `s ≥ 0 lengths of

delay-free sub-paths

ñ collision nodes v0, v1, . . . , vs , vs+1

ñ collision packets P0, . . . , Ps
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Properties

ñ rank(P0) ≥ rank(P1) ≥ · · · ≥ rank(Ps)
ñ
∑s
i=0 `i = d

ñ if the routing takes d+ s steps than the delay sequence has

length s
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Definition 29 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0
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We say a formal delay sequence is active if rank(Pi) = ki holds

for all i.

Let Ns be the number of formal delay sequences of length at

most s. Then

Pr[routing needs at least d+ s steps] ≤ Ns
ks+1
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Lemma 30

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k
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Hence the probability that the routing takes more than d+ s
steps is at most

N3 ·
(

2e · C · (s + k)
(s + 1)k

)s+1

We choose s = 8eC − 1+ (` + 3)d and k = s + 1. This gives that

the probability is at most 1
N` .

PA 11 Some Networks

© Harald Räcke 265/295



Hence the probability that the routing takes more than d+ s
steps is at most

N3 ·
(

2e · C · (s + k)
(s + 1)k

)s+1

We choose s = 8eC − 1+ (` + 3)d and k = s + 1. This gives that

the probability is at most 1
N` .

PA 11 Some Networks

© Harald Räcke 265/295



ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?
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Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used

ñ all routing paths are of the same length d
ñ there are a polynomial number of delay paths

Choose paths as follows:

ñ route from source to random destination on target level

ñ route to real target column (albeit on source level)

ñ route to target

All phases run in time O(p + d) with high probability.
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Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i
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Valiants Trick

A Balanced Multicommodity Flow Problem is a concurrent

multicommodity flow problem in which incoming and outgoing

flow is equal to

c(v) =
∑

e=(v,x)∈E
c(e)
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Valiants Trick

For a multicommodity flow S we assume that we have a

decomposition of the flow(s) into flow-paths.

We use C(S) to denote the congestion of the flow problem

(inverse of througput fraction), and D(S) the length of the

longest routing path.
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For a network G = (V , E, c) we define the characteristic flow

problem via

ñ demands du,v = c(u)c(v)
c(V)

Suppose the characteristic flow problem has a solution S with

C(S) ≤ F and D(S) ≤ F .

PA 11 Some Networks

© Harald Räcke 271/295



For a network G = (V , E, c) we define the characteristic flow

problem via

ñ demands du,v = c(u)c(v)
c(V)

Suppose the characteristic flow problem has a solution S with

C(S) ≤ F and D(S) ≤ F .

PA 11 Some Networks

© Harald Räcke 271/295



Definition 31

A (randomized) oblivious routing scheme is given by a path

system P and a weight function w such that∑
p∈Ps,t

w(p) = 1
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Construct an oblivious routing scheme from S as follows:

ñ let fx,y be the flow between x and y in S
ñ

fx,y ≥ dx,y/C(S) ≥ dx,y/F =
1
F
c(x)c(y)
c(V)

ñ for p ∈ Px,y set w(p) = fp/fx,y

gives an oblivious routing scheme.
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Valiants Trick

We apply this routing scheme twice:

ñ first choose a path from Ps,v , where v is chosen uniformly

according to c(v)/c(V)
ñ then choose path according to Pv,t

If the input flow problem/packet routing problem is balanced

doing this randomization results in flow solution S (twice).

Hence, we have an oblivious scheme with congestion and

dilation at most 2F for (balanced inputs).
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Example: hypercube.
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Oblivious Routing for the Mesh

We can route any permutation on an n×n mesh in O(n) steps,

by x-y routing. Actually O(d) steps where d is the largest

distance between a source-target pair.

What happens if we do not have a permutation?

x −y routing may generate large congestion if some pairs have

a lot of packets.

Valiants trick may create a large dilation.
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Let for a multicommodity flow problem P Copt(P) be the

optimum congestion, and Dopt(P) be the optimum dilation (by

perhaps different flow solutions).

Lemma 32

There is an oblivious routing scheme for the mesh that obtains a

flow solution S with C(S) = O(Copt(P) logn) and

D(S) = O(Dopt(P)).
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Lemma 33

For any oblivious routing scheme on the mesh there is a demand

P such that routing P will give congestion Ω(logn · Copt).
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