Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $O(\log n - \log p)$ with p processors even if there are p copies of the search key.

Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $O(\log n - \log p)$ with p processors even if there are p copies of the search key.

◆ □ ▶ < □ ▶ < □ ▶
 121/295

Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $O(\log n - \log p)$ with p processors even if there are p copies of the search key.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_l)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = rank(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

 $\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = rank(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = rank(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define rank $(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

We have already seen a merging-algorithm that runs in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Using the fast search algorithm we can improve this to a running time of $O(\log \log n)$ and work $O(n \log \log n)$.

We have already seen a merging-algorithm that runs in time $O(\log n)$ and work O(n).

Using the fast search algorithm we can improve this to a running time of $O(\log \log n)$ and work $O(n \log \log n)$.

Input: $A = a_1, ..., a_n$; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of *B*, using the parallel search algorithm with *p* processors. Time: O(1). Work: O(n).
- 2. Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \dots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: O(1). Work: $O(\sqrt{m} \cdot \sqrt{n}) = O(n)$

 $j(i) := \operatorname{rank}(b_{i\sqrt{m}}:A)$

3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.

Recursively compute $rank(B_i : A_i)$.

4. Let k be index not a multiple of \sqrt{m} . $i = \lfloor \frac{k}{\sqrt{m}} \rfloor$. Then $\operatorname{rank}(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 124/295

Input: $A = a_1, ..., a_n$; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of *B*, using the parallel search algorithm with *p* processors. Time: O(1). Work: O(n).
- **2.** Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \dots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: O(1). Work: $O(\sqrt{m} \cdot \sqrt{n}) = O(n)$

 $j(i) := \operatorname{rank}(b_{i\sqrt{m}}:A)$

3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.

Recursively compute $rank(B_i : A_i)$.

4. Let k be index not a multiple of \sqrt{m} . $i = \lfloor \frac{k}{\sqrt{m}} \rfloor$. Then $\operatorname{rank}(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 124/295

Input: $A = a_1, ..., a_n$; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of *B*, using the parallel search algorithm with *p* processors. Time: O(1). Work: O(n).
- **2.** Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \dots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: O(1). Work: $O(\sqrt{m} \cdot \sqrt{n}) = O(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}}:A)$$

3. Let
$$B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$$
; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.

Recursively compute $rank(B_i : A_i)$.

4. Let *k* be index not a multiple of \sqrt{m} . $i = \lfloor \frac{k}{\sqrt{m}} \rfloor$. Then rank $(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

Input: $A = a_1, ..., a_n$; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of *B*, using the parallel search algorithm with *p* processors. Time: O(1). Work: O(n).
- **2.** Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \dots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: O(1). Work: $O(\sqrt{m} \cdot \sqrt{n}) = O(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}}:A)$$

3. Let
$$B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$$
; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.

Recursively compute $rank(B_i : A_i)$.

4. Let *k* be index not a multiple of \sqrt{m} . $i = \lfloor \frac{k}{\sqrt{m}} \rfloor$. Then rank $(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

The algorithm can be made work-optimal by standard techniques.

proof on board ...

Lemma 2 A straightforward parallelization of Mergesort can be implemented in time $O(\log n \log \log n)$ and with work $O(n \log n)$.

This assumes the CREW-PRAM model.

▲ 個 ト ▲ 国 ト ▲ 国 ト 126/295

Lemma 2

A straightforward parallelization of Mergesort can be implemented in time $O(\log n \log \log n)$ and with work $O(n \log n)$.

This assumes the CREW-PRAM model.

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $O(h \log \log n)$ and work O(hn), where $h = O(\log n)$ is the height of the tree.

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $O(h \log \log n)$ and work O(hn), where $h = O(\log n)$ is the height of the tree.

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $O(h \log \log n)$ and work O(hn), where $h = O(\log n)$ is the height of the tree.

We again compute L[v] for every node in the complete binary tree.

After round *s*, *L_s*[*v*] is an **approximation** of *L*[*v*] that will be improved in future rounds.

For $s \ge 3$ height(v), $L_s[v] = L[v]$.

We again compute L[v] for every node in the complete binary tree.

After round *s*, $L_s[v]$ is an **approximation** of L[v] that will be improved in future rounds.

For $s \ge 3$ height(v), $L_s[v] = L[v]$.

We again compute L[v] for every node in the complete binary tree.

After round *s*, $L_s[v]$ is an **approximation** of L[v] that will be improved in future rounds.

For $s \ge 3$ height(v), $L_s[v] = L[v]$.

Pipelined Mergesort

In every round, a node v sends sample($L_s[v]$) (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round *s* if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

Pipelined Mergesort

In every round, a node v sends sample($L_s[v]$) (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round *s* if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

In every round, a node v sends sample($L_s[v]$) (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round *s* if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

Pipelined Mergesort

Algorithm 11 ColeSort()
1: initialize $L_0[v] = A_v$ for leaf nodes; $L_0[v] = \emptyset$ otw.
2: for $s \leftarrow 1$ to $3 \cdot \operatorname{height}(T)$ do
3: for all active nodes <i>v</i> do
4: // u and w children of v
5: $L'_{s}[u] \leftarrow \text{sample}(L_{s-1}[u])$
6: $L'_s[w] \leftarrow \text{sample}(L_{s-1}[w])$
7: $L_s[v] \leftarrow \operatorname{merge}(L'_s[u], L'_s[u])$

sample($L_s[v]$) = $\begin{cases}
sample_4(L_s[v]) & s \leq 3 \text{ height}(v) \\
sample_2(L_s[v]) & s = 3 \text{ height}(v) + 1 \\
sample_1(L_s[v]) & s = 3 \text{ height}(v) + 2
\end{cases}$

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 130/295

Pipelined Mergesort

lgorithm 11 ColeSort()
: initialize $L_0[v] = A_v$ for leaf nodes; $L_0[v] = \emptyset$ otw.
the for $s \leftarrow 1$ to $3 \cdot \operatorname{height}(T)$ do
for all active nodes v do
\therefore // <i>u</i> and <i>w</i> children of <i>v</i>
$L'_{s}[u] \leftarrow \text{sample}(L_{s-1}[u])$
$E: \qquad L'_{s}[w] \leftarrow \text{sample}(L_{s-1}[w])$
$L_s[v] \leftarrow \operatorname{merge}(L'_s[u], L'_s[u])$

sample(
$$L_s[v]$$
) =

$$\begin{cases}
sample_4(L_s[v]) & s \leq 3 \operatorname{height}(v) \\
sample_2(L_s[v]) & s = 3 \operatorname{height}(v) + 1 \\
sample_1(L_s[v]) & s = 3 \operatorname{height}(v) + 2
\end{cases}$$

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 131/295

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 131/295

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 131/295

7 Searching and Sorting

◆個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 131/295

7 Searching and Sorting

▲ □ ▶ < ■ ▶ < ■ ▶</p>
131/295

7 Searching and Sorting

◆ 個 ト ◆ 臣 ト ◆ 臣 ト 131/295

7 Searching and Sorting

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 131/205

7 Searching and Sorting

▲ @ ▶ < \alpha \alp

▲ 個 ▶ ▲ 里 ▶ ▲ 里 ▶ 131/295

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
131/295

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 131/295

7 Searching and Sorting

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 131/295

7 Searching and Sorting

◆個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 131/295

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 131/295

7 Searching and Sorting

7 Searching and Sorting

▲ □ ▶ < ■ ▶ < ■ ▶</p>
131/295

7 Searching and Sorting

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 131/295

7 Searching and Sorting

◆個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 131/295

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes.
- suppose it is true for all nodes up to height *h*;
- fix a node v on level h+1 with children u and w
- $\mathcal{L}_{3h}[u]$ and $\mathcal{L}_{3h}[u]$ are complete by induction hypothesis
- further sample($\mathcal{L}_{3h}(z|w|) = \mathcal{L}[w]$ and $(z_{3h}(z|w|) = \mathcal{L}[w]$
- bence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- L_{3h}[u] and L_{3h}[w] are complete by induction hypothesis
- ▶ further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- L_{3h}[u] and L_{3h}[w] are complete by induction hypothesis
- ▶ further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- L_{3h}[u] and L_{3h}[w] are complete by induction hypothesis
- ▶ further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- ▶ further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- ► further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- ► further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 4

The number of elements in lists $L_s[v]$ for active nodes v is at most O(n).

proof on board ...

Definition 5

A sequence *X* is a *c*-cover of a sequence *Y* if for any two consecutive elements α, β from $(-\infty, X, \infty)$ the set $|\{y_i \mid \alpha \leq y_i \leq \beta\}| \leq c$.

Lemma 6 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a, b] with $a, b \in L'_s[v] \cup \{-\infty, \infty\}$ fulfills $|[a, b] \cap (L'_s[v] \cup \{-\infty, \infty\})| = k$ we say [a, b] intersects $(-\infty, L'_s[v], +\infty)$ in k items.

Lemma 7 If [a, b] intersects $(-\infty, L'_s[v], \infty)$ in $k \ge 2$ items, then [a, b]intersects $(-\infty, L'_{s+1}, \infty)$ in at most 2k items.

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 135/295

Lemma 6 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a, b] with $a, b \in L'_{s}[v] \cup \{-\infty, \infty\}$ fulfills $|[a, b] \cap (L'_{s}[v] \cup \{-\infty, \infty\})| = k$ we say [a, b] intersects $(-\infty, L'_{s}[v], +\infty)$ in k items.

Lemma 7 If [a, b] intersects $(-\infty, L'_s[v], \infty)$ in $k \ge 2$ items, then [a, b]intersects $(-\infty, L'_{s+1}, \infty)$ in at most 2k items.

▲圖▶ ▲ 圖▶ ▲ 圖▶
135/295

Lemma 6 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a, b] with $a, b \in L'_{s}[v] \cup \{-\infty, \infty\}$ fulfills $|[a, b] \cap (L'_{s}[v] \cup \{-\infty, \infty\})| = k$ we say [a, b] intersects $(-\infty, L'_{s}[v], +\infty)$ in k items.

Lemma 7 If [a, b] intersects $(-\infty, L'_s[v], \infty)$ in $k \ge 2$ items, then [a, b] intersects $(-\infty, L'_{s+1}, \infty)$ in at most 2k items.

Merging with a Cover

Lemma 8

Given two sorted sequences A and B. Let X be a c-cover of A and B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time $\mathcal{O}(1)$ using $\mathcal{O}(|X|)$ operations.

Merging with a Cover

Lemma 9

Given two sorted sequences A and B. Let X be a c-cover of A for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X| + |B|)operations; this means we can compute rank(A : B) and rank(B : A).

In order to do the merge in iteration s + 1 in constant time we need to know

 $rank(L_{s}[v]:L'_{s+1}[u])$ and $rank(L_{s}[v]:L'_{s+1}[v])$

and we need to know that $L_s[v]$ is a 4-cover of $L'_{s+1}[u]$ and $L'_{s+1}[v]$.

- $= L_i[v] \supseteq L'_i[u], L'_i[u]$
- $L_{i+1}[u]$ is 4-cover of $L_{i+1}[u]$
 - Hence, $\mathcal{L}_{i}[u]$ is 4-cover of $\mathcal{L}'_{i,1}[u]$ as adding more elements cannot destroy the cover-property.

• $L_s[v] \supseteq L'_s[u], L'_s[u]$

- $L'_s[u]$ is 4-cover of $L'_{s+1}[u]$
- ► Hence, L_s[v] is 4-cover of L'_{s+1}[u] as adding more elements cannot destroy the cover-property.

- $L_s[v] \supseteq L'_s[u], L'_s[u]$
- ► L'_s[u] is 4-cover of L'_{s+1}[u]
- ► Hence, L_s[v] is 4-cover of L'_{s+1}[u] as adding more elements cannot destroy the cover-property.

- $L_s[v] \supseteq L'_s[u], L'_s[u]$
- ► *L*'_{*s*}[*u*] is 4-cover of *L*'_{*s*+1}[*u*]
- ► Hence, L_s[v] is 4-cover of L'_{s+1}[u] as adding more elements cannot destroy the cover-property.

Analysis

Lemma 11

Suppose we know for every internal node $\boldsymbol{\upsilon}$ with children \boldsymbol{u} and \boldsymbol{w}

- rank $(L'_{s}[v]:L'_{s+1}[v])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$

We can compute

- rank $(L'_{s+1}[v]:L'_{s+2}[v])$
- rank $(L'_{s+1}[u]:L'_{s+1}[w])$
- rank $(L'_{s+1}[w]:L'_{s+1}[u])$

in constant time and $O(|L_{s+1}[v]|)$ operations, where v is the parent of u and w.

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute

- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s+1}[u])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s+1}[w])$

Compute

- ▶ $\operatorname{rank}(L'_{s+1}[w]:L'_{s+1}[u])$
- ► rank $(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute

- rank $(L'_{s}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[w])$

Compute

- $\operatorname{rank}(L'_{s+1}[w]:L'_{s+1}[u])$
- ► rank $(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute

- rank $(L'_{s}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[w])$

Compute

- $\operatorname{rank}(L'_{s+1}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- rank $(L'_{s}[u]:L'_{s+1}[w])$
- rank $(L'_{s}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- $\blacktriangleright \operatorname{rank}(L_s[v]:L'_{s+1}[u])$
- rank $(L_s[v]:L'_{s+1}[w])$

Compute

- $\operatorname{rank}(L_s[v]:L_{s+1}[v])$ (by adding)
- $\operatorname{rank}(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- rank $(L'_{s}[u]:L'_{s+1}[w])$
- rank $(L'_{s}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[u])$
- rank($L_s[v]: L'_{s+1}[w]$)

Compute

- $\operatorname{rank}(L_s[v]:L_{s+1}[v])$ (by adding)
- $\operatorname{rank}(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- rank $(L'_{s}[u]:L'_{s+1}[w])$
- rank $(L'_{s}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[u])$
- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[w])$

Compute

- $\operatorname{rank}(L_{s}[v]:L_{s+1}[v])$ (by adding)
- $\operatorname{rank}(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

