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Searching

An extension of binary search with p processors gives that one
can find the rank of an element in
logn

log,,1(n) = Tog(p + 1)

many parallel steps with p processors. (not work-optimal)
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Searching

An extension of binary search with p processors gives that one
can find the rank of an element in

logn

log,.1(n) = log(p + 1)

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model
searching cannot be done faster than O(logn — log p) with p
processors even if there are p copies of the search key.
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Merging

Given two sorted sequences A = (aq,...,ay,) and

B

= (by,...,by), compute the sorted squence C = (cy,...

lCTL)
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Merging

Given two sorted sequences A = (aq,...,ay,) and
B = (by,...,by), compute the sorted squence C = (c1,...,Cn).
Definition 1

Let X = (x1,...,Xx;) be a sequence. The rank rank(y : X) of v in
Xis
rank(y : X) = |[{x € X | x < y}|
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Merging

Given two sorted sequences A = (aq,...,ay,) and
B = (by,...,by), compute the sorted squence C = (c1,...,Cn).
Definition 1

Let X = (x1,...,Xx;) be a sequence. The rank rank(y : X) of v in
X is
rank(y: X) =|{x € X | x < y}|

For a sequence Y = (y1,...,Ys) we define
rank(Y : X) := (71,...,7s) with ; = rank(y; : X).
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Merging

We have already seen a merging-algorithm that runs in time
O(logn) and work O(n).
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Merging

We have already seen a merging-algorithm that runs in time
O(logn) and work O(n).

Using the fast search algorithm we can improve this to a running
time of O(loglogn) and work @(nloglogn).
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Merging

Input: A=ay,...,an; B=by,....by; m=<n

1. if m < 4 then rank elements of B, using the parallel search
algorithm with p processors. Time: O(1). Work: O(n).
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Merging

In

put: A=aj,...,an,B=>b1,...,byy; m=n
1. if m < 4 then rank elements of B, using the parallel search
algorithm with p processors. Time: O(1). Work: O(n).

2. Concurrently rank elements b s, by s, ..., bm in A using

the parallel search algorithm with p = /n. Time: O(1).
Work: O(y/m - /n) = O(n)

J (1) :=rank(b; s : A)
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Merging

In

put: A=aj,...,an,B=>b1,...,byy; m=n
1. if m < 4 then rank elements of B, using the parallel search
algorithm with p processors. Time: O(1). Work: O(n).

2. Concurrently rank elements b s, by s, ..., bm in A using

the parallel search algorithm with p = /n. Time: O(1).
Work: O(ym - /n) = O(n)

Ji(i) := rank(b; s : A)

3. Let B; = (b; sm+1s---» P(is1)ym-1); and
Ai = (Aji)+1s-+-» Aj(i+1))-

Recursively compute rank(B; : A;).

T

PA 7 Searching and Sorting &
©Harald Racke



Merging

Input: A=ay,...,an; B=by,....by; m=<n

1.

if m < 4 then rank elements of B, using the parallel search
algorithm with p processors. Time: O(1). Work: O(n).

Concurrently rank elements b s, b s, - .., bm in A using
the parallel search algorithm with p = /n. Time: O(1).
Work: O(ym - yn) = O(n)

Ji(i) := rank(b; s : A)

. Let Bi = (bi sm+1s---5b(iv1)ym-1); and

Ai = (Ajiy+1r---rAj(i+1))-
Recursively compute rank(B; : A;).

Let k be index not a multiple of \/m. i = [\/%]. Then
rank(by : A) = j(i) + rank(by : A;).
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The algorithm can be made work-optimal by standard
techniques.

proof on board...
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Mergesort

Lemma 2
A straightforward parallelization of Mergesort can be
implemented in time O (log nloglogn) and with work O(nlogn).

‘m PA 7 Searching and Sorting = =
©Harald Racke



Mergesort

Lemma 2
A straightforward parallelization of Mergesort can be

implemented in time O (log nloglogn) and with work O(nlogn).

This assumes the CREW-PRAM model.
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Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the
leaf nodes rooted at v.
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Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the
leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary

tree where the leaf nodes correspond to nodes in the given array.
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Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the
leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary

tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary
tree can be performed in parallel we obtain time O(hloglogn)
and work @(hn), where h = O(logn) is the height of the tree.
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Pipelined Mergesort

We again compute L[v] for every node in the complete binary
tree.
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Pipelined Mergesort

We again compute L[v] for every node in the complete binary
tree.

After round s, Ls[v] is an approximation of L[v] that will be
improved in future rounds.
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Pipelined Mergesort

We again compute L[v] for every node in the complete binary
tree.

After round s, Ls[v] is an approximation of L[v] that will be
improved in future rounds.

For s = 3height(v), Ls[v] = L[v].
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Pipelined Mergesort

In every round, a node v sends sample(Ls;[v]) (an
approximation of its current list) upwards, and receives
approximations of the lists of its children.
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Pipelined Mergesort

In every round, a node v sends sample(Ls;[v]) (an
approximation of its current list) upwards, and receives
approximations of the lists of its children.

It then computes a new approximation of its list.
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Pipelined Mergesort

In every round, a node v sends sample(Ls;[v]) (an
approximation of its current list) upwards, and receives
approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if s < 3height(v) (this means
its list is not yet complete at the start of the round, i.e.,
Ls—1[v] # L[v].
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Pipelined Mergesort

Algorithm 11 ColeSort()

for s — 1 to 3 - height(T) do
for all active nodes v do
// u and w children of v
Li[u] — sample(Ls—1[ul)
Li[w] « sample(Ls—1[w])

SN R

Lg[v] — merge(L;[ul], Li[u])

. initialize Lo[v] = Ay for leaf nodes; Lo[v] = 0 otw.

T

PA 7 Searching and Sorting
©Harald Racke



Pipelined Mergesort

Algorithm 11 ColeSort()

. initialize Lo[v] = Ay for leaf nodes; Lo[v] = 0 otw.
for s — 1 to 3 - height(T) do
for all active nodes v do
// u and w children of v
Li[u] — sample(Ls—1[ul)
Li[w] « sample(Ls—1[w])
Ls[v] — merge(L;[u], Ls[u])

SN R

sampley (Ls[v]) s < 3height(v)
sample(Ls[v]) =4 sample,(Ls[v]) s = 3height(v) +1
sample; (Ls[v]) s = 3height(v) +2
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Colesort

lo][s][2][7][8][o][4][o][3][2][o][e](z][2][2][e][3][Z](s](s](s] (3] ][4l (3] [s][s] ] (2] 0] (5] (7]
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Colesort

lo][s1[2][z][8][e][4][2][3][2][e][6] (z][2] (2] [l (3] [Z] (][] (5] [3] (][] (3] (5] [s] ] 2] [a] (51 7]
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Colesort

lo][s1[2][7][8][e][4][2][3][2][e][6] [z][2] (2] [e] (3] [Z] (s][s] (5] (3] (][4l (3] (5] (5] ] 2] A (51 7]
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Colesort

lo]s] [2]7] [o]8] [4]o] [3]9] [o]6] [7]9] [0]4] [3]7] [s]s] [3]s] [1]4] [3]5] [1]s] [1]2] [5]7]

7 Searching and Sorting

©Harald Racke
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Colesort

[o]3] [s]o] [o]7] [7]8] [4]8] [3]8] [6]o] [3]8] [2]4] [4]s] [1]o] [6]7] [8]9] [5]7] [2]5] [2]7]

3] [o][o][s][z][](z][e][8][4][8][3] (=] [6][3][8] (2] [2] [4][s] (o] (1] [e][z] (o] (8] [s][Z] [s][2] [2] 7]
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Colesort

3]9] [7]8] [8]8] [8]9] [4]5] [7]9] [7]9] [5]7]

3] [o] [7z[ [s] [8] [8] [of [8] [a] [s] [o]l [7z] [o] 7] [s[ [7]
[o]3] [s]9] [o]7] [7]8] [4]8] [3]8] [6]o] [3]8] [2]4] [4]s] [1]o] [6]7] [8]9] [5]7] [2]5] [2]7]

3] [o][o][s][z][](z][e][8][4][8][3] (=] [6][3][8] (2] [2] [4][s] (o] (1] [e][z] (o] (8] [s][Z] [s][2] [2] 7]
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Colesort

8] [3[e]s[o] |

[o[3]s[e] [o]7]7[8] [3]]s]8] 2[a]a[s] [1]e]7]o] [s[7]s[o] [2]2]5]7]
o[3] [s[o] [o]7] [7]8] [4]8] [3]8] [6]9] [3]8] [2]4] [4]s] [1]9] [6]7] [8]9] [5]7] [2]5] [2]7]
[o]3] [s]o] [o]7] [7]8] [4]8] [3]8] [6]o] [3]8] [2]4] [4]s] [1]o] [6]7] [8]9] [5]7] [2]5] [2]7]

3][8][4][2][2][s][e] ] [e][Z] (=] [&] (5] [Z] (5] [2] (21 7]

3] [o][9][s][z][e](z][e][8][4][8][3][2][6] (3][e]

.
7 Searching and Sorting
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Colesort

9 8 8 9 5 9 9 7
lo[3]s[o] [o]7]7[8] [3]4]els] [3]e]elo] [2]4]4[s] [1]e]z[o] [s[z][s[o] [2]2]5]7]
3] [o][o][s][z][](z][][8][4][8][3](=][e][3][8] (2] [2] [4][s] (o] (1] [e][z] (o] [&] [s][Z] [s][2] [2] 7]
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Colesort

[3]9] 7]38] [4]8] 6]9] [4]5]
5

5
lo[3[s[o] [ol7]7[8] [3]4]sls] [3]e[slo] [2]4]a]s] [1]e]7[o] [s[z[s]o] [2][2]s]7]

[o]3] [s]o] [o]7] [7]8] [4]8] [3]8] [6]o] [3]8] [2]4] [4]s] [1]o] [6]7] [8]9] [5]7] [2]5] [2]7]

3] [o][o][s][z][](z][][8][4][8][3](=][e][3][8] (2] [2] [4][s] (o] (1] [e][z] (o] [&] [s][Z] [s][2] [2] 7]

.
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Colesort

9 9
lo[o[3[s]7]7[s[o]  [3[3[4]elslslslo]  [1[2[4]4[slelz[o]  [2[2[s[s]7[7]8]e]

IIIIII IIIIII
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Colesort

I0I0I3ISI7I7I8I9I I3I3I4IGISI8I8I9I III2I4I4I5I6I7I9I I2I2ISISI7I7I8I9I

IIIIIIIIM I3III8|IIIIIIIIIIIIIIIIIIIIIIIII
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Colesort

o[s[7]9 3][6[8]9 2[4]6]9 2[5[7]9
IOIOI3ISI7I7 8[o9] I3I3 4IGI818I8I9| III2I4I4ISI6 7]9] IZI2 SI5I7I7I8I9I

IIIIIIIIIII3III|IIIIIIIIIIIIIIIIIIIIIIIII
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Colesort

[3]4]o]9]
[4]9] [3]9]

[o]2]3]3]3]3[3[4[4[5][6][6][6]6]7]9] [o[1]1]2]2]2]3[3]3[4[5][5[6]7][8]9]
s =12

[0][2]3]3]4]6 6I7| |313 3[4]s[6]6]9] [0[1]2]3]3]s 7I9| ]
|o|z|3|3|4|6 3|4|5|6|6|9| |o|||2|3|3|5 1

2I3I4151618|
I [4 I [6]8]

NN

0\
W
\l

IIIIIIIIIII3IIIIIIIIIIIIIIIIII9IIIIIIIIIII
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Colesort

[o]2]3]3[3]3[3]4[4[5][6[6[6]6]7]9] [o[1]1]2]2]2[3[3[3]4[5][5[6][7][8]9]
s =13

IOIZI3I3I4I6I6I7I I3I3I3I4ISI616I9I lo[1 I2I3I3ISI7I9I b I2I2I3I4I5I6I8|

IIIIIIIIIII3III|IIIIIIIIIIIIIIIIIIIIIIIII
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Colesort

4]9
(112[2]2]3]3]3]4]4][s]s[6[6]7][o]9]

2[3[3]4][5]6]6]9 [1]2]2[3]4]5][7]9]
[o]2]3[3[3[3]3]4[4]s[6]6]6]6]7]9] [o[1]1]2]2]2]3]3]3]4[s]s]6]7][8]9]
s=14
IOIZI3I3I4IGIGI7I I3I3I3I4ISI6I6‘I9I [o]1 IZI3I3ISI7I9I b I2I2I3I4ISI6I8|

IIIIIIIIIII3III|IIIIIIIIIIIIIIIIIIIIIIIII
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Colesort

[2]4]6]9]
[oJo]1]1]2]2]2]2]3]3[3[3]3[3]3[3]4[4[4[5]5]5]6][6]6][6][6][7[7[8]9]9]
[0]2]3]3]3]3[3][4[4[5]6][6]6]6]7]9] [o[1]1]2]2]2]3]3]3[4[5][5][6]7][8]9]
[o]2]3]3[3][3[3]4[4[5[6[6[6]6]7]9] [o[1]1]2]2]2[3[3[3]4[5[5[6][7][8]9]
s =15
IOIZI3I3I4IGI6I7I I3I3I3I4ISIGI6'I9I [o[1 IZI3ISISI7I9I [ IZIZI3I4ISI6ISI
IIIII IIIII I3III| IIIII II3II| IIIII IIIII IIIII
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Colesort

6/7|8|9

1245
loJofo[1[1]2]2]2]2[3[4[4[4]4]5]5

6le[e[6]7[7[7[7[7]7]7]s]8]8[9]9]

[ofoJo[1[1]4]5]e]6]7[7]7]7[8]8]9]

s =

[2]2]2]2]3]4]4]4]5]e[6]7]7]7]8]9]

16

loJo[s[6]7]7[8]o]  [o[1]1]4]6]7]7]8]

(2[2[3]4]el6]7]o]  [2[2]4]4]5]7]7]8]

VANENIVAN

VANIRIVAN

lo[7]8[9] [o]s]e[7] [e[1]1]7] [4]6]7]8]

(2]2]6[9] [3]4]6[7] [2]4]s]8] [2]4]7]7]

[5]6] [o]7] [1]1]

thrdh ittty

3]6] [4]8] [2]5] 2]4]
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Colesort

o[1]2]2]3]4]4]5

6l6]7]7[7]8]8]

[o]
loJofo[1[1]2]2]2]2[3[4[4]4]4]5]5

8[8[9]
6le[e[e[7[7[7[7[7]7]7]s]8]8[9]9]

[ofoJo[1[1]4]5]e]6]7[7]7]7[8]8]9]

[2]2]2]2]3]4]4]4]5]e[6]7]7]7]8]9]

s =17

loJo[s[6]7]7[8]o]  [o[1]1]4]6]7]7]8]

(2[2[3]4]el6]7]o]  [2[2]4]4]5]7]7]8]

ZANAN

VANIRIVAN

lo[7]8[9] [o]s]e[7] [e[1]1]7] [4]6]7]8]

(2]2]6]9]

(314]el7] [2]4]s[8] [2]4]7]7]

thrdh ittty
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Pipelined Mergesort

Lemma 3
After round s = 3height(v), the list L[v] is complete.
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Pipelined Mergesort

Lemma 3
After round s = 3height(v), the list L[v] is complete.

Proof:

> clearly true for leaf nodes
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Pipelined Mergesort

Lemma 3

After round s = 3height(v), the list L[v] is complete.

Proof:
> clearly true for leaf nodes

> suppose it is true for all nodes up to height h;
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Pipelined Mergesort

Lemma 3

After round s = 3height(v), the list L[v] is complete.

Proof:
> clearly true for leaf nodes
> suppose it is true for all nodes up to height h;

» fix a node v on level h + 1 with children © and w
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Pipelined Mergesort

Lemma 3
After round s = 3height(v), the list L[v] is complete.

Proof:
> clearly true for leaf nodes
> suppose it is true for all nodes up to height h;
» fix a node v on level h + 1 with children u and w

» L3p[u] and L3 [w] are complete by induction hypothesis
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Pipelined Mergesort

Lemma 3
After round s = 3height(v), the list L[v] is complete.

Proof:

> clearly true for leaf nodes

> suppose it is true for all nodes up to height h;

» fix a node v on level h + 1 with children u and w

» L3p[u] and L3 [w] are complete by induction hypothesis

» further sample(L3j »[u]) = L[u] and
sample(Lzp+2[v]) = L[V]

T
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Pipelined Mergesort

Lemma 3
After round s = 3height(v), the list L[v] is complete.

Proof:

>

>

>

clearly true for leaf nodes

suppose it is true for all nodes up to height h;

fix a node v on level h + 1 with children u and w

L3pu[u] and L3p[w] are complete by induction hypothesis
further sample(L3p2[u]) = L[u] and

sample(L3p42[v]) = L{v]

hence in round 3h + 3 node v will merge the complete list
of its children; after the round L[v] will be complete

T
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Pipelined Mergesort

Lemma 4
The number of elements in lists Ls[v] for active nodes v is at
most O(n).

proof on board...

m PA 7 Searching and Sorting =
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Definition 5
A sequence X is a c-cover of a sequence Y if for any two
consecutive elements «, 8 from (—o0, X, c0) the set

{yi|l <y <B} <c.
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Pipelined Mergesort

Lemma 6
Li[v] is a 4-cover of L [V].
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Pipelined Mergesort

Lemma 6
Li[v] is a 4-cover of L [V].

If [a,b] with a,b € L;[v] U {—0c0, 00} fulfills
[[a,b] N (L;[v]U {—o00,00})| = k we say [a, D] intersects
(—oo,L5[V], +0) in k items.
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Pipelined Mergesort

Lemma 6
Li[v] is a 4-cover of L [V].

If [a,b] with a,b € L;[v] U {—0c0, 00} fulfills
I[a,b] N (Li[v] U {—00,00})| = k we say |a, ]| intersects
(—oo,L5[V], +0) in k items.

Lemma 7
If [a,b] intersects (—oo,L;[V], ) ink = 2 items, then [a, D]
intersects (—oo, L, ) in at most 2k items.

‘m PA 7 Searching and Sorting =
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Merging with a Cover

Lemma 8
Given two sorted sequences A and B. Let X be a c-cover of A and
B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X|) operations.
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Merging with a Cover

Lemma 9
Given two sorted sequences A and B. Let X be a c-cover of A for
constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X| + |B|)
operations; this means we can compute rank(A : B) and
rank(B: A).
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In order to do the merge in iteration s + 1 in constant time we
need to know

rank(Ls[v]: Ly, [ul) and rank(Ls[v]:L;, [v])

and we need to know that Ls[v] is a 4-cover of L}, ,[u] and
Lg (vl
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Lemma 10
Ls[v] is a4-cover of L, [u] and L ,[v].
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Lemma 10

Ls[v] is a4-cover of L, [u] and L ,[v].

» Le[v] 2 Ly[ul, Ls[u]
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Lemma 10
Ls[v] is a4-cover of L, [u] and L ,[v].

> Lsfv] =2 Li[u], L[u]
» Li[ulis 4-cover of L ;[u]

m PA 7 Searching and Sorting
©Harald Racke



Lemma 10
Ls[v] is a4-cover of L, [u] and L ,[v].

» Ls[v] 2 Li[u], L[u]
» Li[ulis 4-cover of L ;[u]

» Hence, Ls[v] is 4-cover of L}, ,[u] as adding more elements
cannot destroy the cover-property.
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Analysis

Lemma 11l
Suppose we know for every internal node v with children u and
w

» rank(Li[v]: L, [v])
» rank(Li[u]: Li[w])
» rank(Li[w]: Li[ul)

We can compute
» rank(L,,,[v]: L, »[v])
» rank(L}, [ul: L, [w])
» rank(L},[w]: L, [ul)

in constant time and O(|Ls.1[v]|) operations, where v is the
parent of u and w.
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Given

» rank(Li[u]: Ly, [ul) (4-cover)
» rank(Li[u]: Li[w])
» rank(Li[w]: Li[ul)
» rank(L;[w]: L, ,[w]) (4-cover)

T
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Given

» rank(Li[u]: Ly, [ul) (4-cover)
» rank(Li[u]: Li[w])
» rank(Li[w]: Li[ul)
» rank(L;[w]: L, ,[w]) (4-cover)

Compute

» rank(Ly[w]: L}, [ul)
» rank(Li[u]: Ly, [w])

T
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Given
» rank(Li[u]: Ly, [ul) (4-cover)
» rank(Li[u]: Li[w])
» rank(Li[w]: Li[ul)
» rank(L;[w]: L, ,[w]) (4-cover)
Compute
» rank(Ly[w]: L}, [ul)
» rank(Li[u]: Ly, [w])
Compute
» rank(L,,;[w]: L, [ul)

» rank(L,, [ul: L, [w])

ranks between siblings can be computed easily
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Given

» rank(Li[u]: L, ,[ul) (4-cover)
» rank(Li[u]: Ly [w])
» rank(Li[w]: Ly [ul)

» rank(L;[w]: L, ,[w]) (4-cover)

T
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Given
» rank(Li[u]: L, ,[ul) (4-cover)
» rank(Li[u]: Ly [w])
» rank(Li[w]: Ly [ul)
» rank(L;[w]: L, ,[w]) (4-cover)
Compute (recall that Lg[v ] = merge(L;[u],Li[w]))
» rank(Ls[v]: L, [ul)
» rank(Ls[v]: L, [w])
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Given
» rank(Li[u]: L, ,[ul) (4-cover)
» rank(Li[u]: Ly [w])
» rank(Li[w]: Ly [ul)
» rank(L;[w]: L, ,[w]) (4-cover)
Compute (recall that Lg[v ] = merge(L;[u],Li[w]))
» rank(Ls[v]: L, [ul)
» rank(Ls[v]: L, [w])
Compute
» rank(Ls[v]: Ls+1[v]) (by adding)
» rank(L;,,[v]:L;,»[v]) (by sampling)
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