In the following we design oblivious algorithms that obtain close to optimum congestion (no bounds on dilation).

We always assume that we route a flow (instead of packet routing).

We can also assume this is a randomized path-selection scheme that guarantees that the expected load on an edge is close to the optimum congestion.

© Harald Räcke

Formally

279

- cluster S partitioned into clusters S_1, \ldots, S_ℓ
- weight w_S(v) of node v is total capacity of edges connecting v to nodes in other sub-clusters or outside of S
- demand for pair $(x, y) \in S \times S$

$$\frac{w_S(x)w_S(y)}{w_S(S)}$$

- gives flow problem for every cluster
- if every flow problem can be solved with congestion C then there is an oblivious routing scheme that always obtains congestion

 $\mathcal{O}(\text{height}(T) \cdot C \cdot C_{\text{opt}}(\mathcal{P}))$

Oblivious Routing Scheme

Sparsest Cut

Definition 1

Given a multicommodity flow problem \mathcal{P} with demands D_i between source-target pairs s_i, t_i . A sparsest cut for \mathcal{P} is a set Sthat minimizes

$$\Phi(S) = \frac{\operatorname{capacity}(S, V \setminus S)}{\operatorname{demand}(S, V \setminus S)}$$

demand($S, V \setminus S$) is the demand that crosses cut S. capacity($S, V \setminus S$) is the capacity across the cut.

Oblivious Routing Scheme — A **Single Cluster** *S*

Input:

Messages from sub-clusters have been routed to random border-edges of corresponding sub-cluster.

- 1. forward messages to random intra sub-cluster edge
- **2.** delete messages for which source and target are in S
- 3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Sparsest Cut

Clearly,

PA © Harald Räcke $1/\Phi_{\min} \leq C_{opt}(\mathcal{P})$

For single-commodity flows we have $1/\Phi_{min} = C_{opt}(\mathcal{P})$.

In general we have

$$\frac{1}{\Phi_{\min}} \leq \mathsf{C}_{opt}(\mathcal{P}) \leq \mathcal{O}(\log n) \cdot \frac{1}{\Phi_{\min}} \ .$$

This is known as an approximate maxflow mincut theorem.

12 Oblivious Routing via Hierarchical Decompositions

285

LP Formulation

Maximum Concurrent Flow:

 $\mathcal{P}_{s,t}$ is the set of path that connect s and t.

The Dual:

Metric Embeddings

Definition 2

A metric (V, d) is an ℓ_1 -embeddable metric if there exists a function $f: V \to \mathbb{R}^m$ for some m such that

$$d(u,v) = \|f(u) - f(v)\|_1$$

Definition 3

A metric (V, d) embeds into ℓ_1 with distortion α if there exists a function $f: V \to \mathbb{R}^m$ for some m such that

$$\frac{1}{\alpha} \|f(u) - f(v)\|_1 \le d(u, v) \le \|f(u) - f(v)\|$$

PA © Harald Räcke

12 Oblivious Routing via Hierarchical Decompositions

289

Duality

Theorem 4

Any metric (V, d) on |V| = n points is embeddable into ℓ_1 with distortion $O(\log n)$.

290

Theorem 5

For any flow problem \mathcal{P} one can obtain at least a throughput of $\Phi_{min}/\log n$, where Φ_{min} denotes the sparsity of the sparsest cut. In other words

$$C_{opt}(\mathcal{P}) \le \mathcal{O}(\log n) \frac{1}{\Phi_{min}}$$

	12 Oblivious Routing via Hierarchical Decompositions	
🛛 🕒 🛛 🖉 © Harald Räcke		291

Fréchet Embedding

Given a set A of points we define a mapping

$$f(x) := d(x, A)$$

The mapping f is contracting this means

$$\|f(x) - f(y)\| \le d(x, y)$$

50100	PA	12 Obl
	PA © Harald Räcke	

livious Routing via Hierarchical Decompositions

293

LP Formulation

The optimum throughput is given by

$$\begin{array}{|c|c|c|} \min & \sum_{e} c(e)d(e) \\ \text{s.t.} & d \text{ metric} \\ & \sum_{i} D_{i}d(s_{i},t_{i}) \geq 1 \end{array}$$

or

$$C_{\text{opt}}(\mathcal{P}) = \frac{\sum_{i} D_{i} d(s_{i}, t_{i})}{\sum_{e=(u,v)} c(e) d(u,v)}$$

$$\leq \alpha \frac{\sum_{i} D_{i} \cdot ||f(s_{i}) - f(t_{i})||}{\sum_{e=(u,v)} c(e) \cdot ||f(u) - f(v)||}$$

$$= \alpha \frac{\sum_{i} D_{i} \cdot \sum_{S} \gamma_{S} \chi_{S}(s_{i}, t_{i})}{\sum_{e=(u,v)} c(e) \cdot \sum_{S} \gamma_{S} \chi_{S}(u,v)}$$

$$= \alpha \frac{\sum_{S} \gamma_{S} \sum_{i} D_{i} \chi_{S}(s_{i}, t_{i})}{\sum_{S} \gamma_{S} \sum_{e=(u,v)} c(e) \chi_{S}(u,v)}$$

$$\leq \alpha \max_{S} \frac{\sum_{i} D_{i} \chi_{S}(s_{i}, t_{i})}{\sum_{e=(u,v)} c(e) \chi_{S}(u,v)} = \alpha \cdot \frac{1}{\Phi_{\min}}$$

Suppose we have a probability distribution p over sets A_1,\ldots,A_k : Then define $f: V \to \mathbb{R}^k$ by $f(x)_i: V = p(A_i) \cdot d(x, A_i)$ f is still contracting. PA ©Harald Räcke 12 Oblivious Routing via Hierarchical Decompositions

We use a probability distribution over sets such that the expected distance between x and y is at least

 $d(x,y)/\mathcal{O}(\log n)$

	12 Oblivious Routing via Hierarchical Decompositions	
UUU © Harald Räcke		295

