
Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree

PA

© Harald Räcke 152/295

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree

PA 9 Lower Bounds

© Harald Räcke 152/295

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree

PA 9 Lower Bounds

© Harald Räcke 152/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

A Lower Bound for Searching

Theorem 1

Given a sorted table X of n elements and an element y.

Searching for y in X requires Ω(logn
log(p+1)) steps in the parallel

comparsion tree with parallelism p < n.

PA 9 Lower Bounds

© Harald Räcke 154/295

A Lower Bound for Maximum

Theorem 2

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.

PA 9 Lower Bounds

© Harald Räcke 155/295

A Lower Bound for Maximum

Theorem 2

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.

PA 9 Lower Bounds

© Harald Räcke 155/295

A Lower Bound for Maximum

Theorem 2

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.

PA 9 Lower Bounds

© Harald Räcke 155/295

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

A Lower Bound for Maximum

Theorem 3

Computing the maximum of n elements in the comparison tree

requires Ω(log logn) steps whenever the degree of parallelism is

p ≤ n.

Theorem 4

Computing the maximum of n elements requires Ω(log logn)
steps on the comparison PRAM with n processors.

PA 9 Lower Bounds

© Harald Räcke 157/295

A Lower Bound for Maximum

Theorem 3

Computing the maximum of n elements in the comparison tree

requires Ω(log logn) steps whenever the degree of parallelism is

p ≤ n.

Theorem 4

Computing the maximum of n elements requires Ω(log logn)
steps on the comparison PRAM with n processors.

PA 9 Lower Bounds

© Harald Räcke 157/295

An adversary can specify the input such that at the end of the

(i+ 1)-st step the maximum lies in a set Ci+1 of size si+1 such

that

ñ no two elements of Ci+1 have been compared

ñ si+1 ≥
s2
i

2p+ci

PA 9 Lower Bounds

© Harald Räcke 158/295

An adversary can specify the input such that at the end of the

(i+ 1)-st step the maximum lies in a set Ci+1 of size si+1 such

that

ñ no two elements of Ci+1 have been compared

ñ si+1 ≥
s2
i

2p+ci

PA 9 Lower Bounds

© Harald Räcke 158/295

Theorem 5

The selection problem requires Ω(logn/ log logn) steps on a

comparison PRAM.

not proven yet

PA 9 Lower Bounds

© Harald Räcke 159/295

A Lower Bound for Merging

The (k, s)-merging problem, asks to merge k pairs of

subsequences A1, . . . , Ak and B1, . . . , Bk where we know that all

elements in Ai ∪ Bi are smaller than elements in Aj ∪ Bj for

(i < j).

PA 9 Lower Bounds

© Harald Räcke 160/295

A Lower Bound for Merging

Lemma 6

Suppose we are given a parallel comparison tree with

parallelism p to solve the (k, s) merging problem. After the first

step an adversary can specify the input such that an arbitrary

(k′, s′) merging problem has to be solved, where

k′ = 3
4

√
pk

s′ = s
4

√
k
p

PA 9 Lower Bounds

© Harald Räcke 161/295

A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mi
xy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162/295

A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mi
xy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162/295

A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mi
xy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

Lemma 7

Let T(k, s, p) be the number of parallel steps required on a

comparison tree to solve the (k, s) merging problem. Then

T(k,p, s) ≥ 1
4

log
log p

k
log p

ks

provided that p ≥ 2ks and p ≤ ks2/4

PA 9 Lower Bounds

© Harald Räcke 165/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log p

k
7 log p

ks

≥ 1
4

log
log p

k
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log p

k
7 log p

ks

≥ 1
4

log
log p

k
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log p

k
7 log p

ks

≥ 1
4

log
log p

k
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log p

k
7 log p

ks

≥ 1
4

log
log p

k
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log p

k
7 log p

ks

≥ 1
4

log
log p

k
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Theorem 8

Merging requires at least Ω(log logn) time on a CRCW PRAM

with n processors.

PA 9 Lower Bounds

© Harald Räcke 167/295

	Lower Bounds

