
List Ranking

Input:

A list given by successor pointers;

4 5 7 3 1 2 6 8 9

Output:

For every node number of hops to end of the list;

4 5 7 3 1 2 6 8 9

8 7 6 5 4 3 2 1 0

Observation:

Special case of parallel prefix

PA

© Harald Räcke 70



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

1. Given a list with values; perhaps from previous

iterations.

The list is given via predecessor pointers P(i) and

successor pointers S(i).
S(4) = 5, S(2) = 6, P(3) = 7, etc.

PA 5 List Ranking

© Harald Räcke 71



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

2. Find an independent set; time: O(logn); work: O(n).

The independent set should contain a constant fraction

of the vertices.

Color vertices; take local minima

PA 5 List Ranking

© Harald Räcke 71



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

3. Splice the independent set out of the list;

At the independent set vertices the array still contains

old values for P(i) and S(i);

PA 5 List Ranking

© Harald Räcke 71



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

4. Compress remaining n′ nodes into a new array of n′

entries.

The index positions can be computed by a prefix sum

in time O(logn) and work O(n)
Pointers can then be adjusted in time O(1).

PA 5 List Ranking

© Harald Räcke 71



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

5. Solve the problem on the remaining list.

If current size is less than n/ logn do pointer jumping:

time O(logn); work O(n).
Otherwise continue shrinking the list by finding an

independent set

PA 5 List Ranking

© Harald Räcke 71



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

6. Map the values back into the larger list. Time: O(1);
Work: O(n)

PA 5 List Ranking

© Harald Räcke 71



List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

7. Compute values for independent set nodes. Time:

O(1); Work: O(1).
8. Splice nodes back into list. Time: O(1); Work: O(1).

PA 5 List Ranking

© Harald Räcke 71



We need O(log logn) shrinking iterations until the size of the

remaining list reaches O(n/ logn).

Each shrinking iteration takes time O(logn).

The work for all shrinking operations is just O(n), as the size of

the list goes down by a constant factor in each round.

List Ranking can be solved in time O(logn log logn) and work

O(n) on an EREW-PRAM.

PA 5 List Ranking

© Harald Räcke 72



Optimal List Ranking

In order to reduce the work we have to improve the shrinking of

the list to O(n/ logn) nodes.

After this we apply pointer jumping

PA 5 List Ranking

© Harald Räcke 73



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 172 6 14 185 175 17

ñ some nodes are active;

ñ active nodes without neighbouring active nodes are

isolated;

ñ the others form sublists;

1 delete isolated nodes from the list;

2 color each sublist with O(log logn) colors; time: O(1);
work: O(n);

label local minima w.r.t. color as ruler; others as subject

first node of sublist is ruler; needs to be changed!!!

3 advance pointers of removed nodes and of subjects;

make new nodes active

New Iteration

0. every ruler deletes its next subject;

rulers without a subject become active

PA 5 List Ranking

© Harald Räcke 74



Optimal List Ranking

Each iteration requires constant time and work O(n/ logn),
because we just work on one node in every block.

We need to prove that we just require O(logn) iterations to

reduce the size of the list to O(n/ logn).

PA 5 List Ranking

© Harald Räcke 75



Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76



Analysis

For the analysis we assign a weight to every node in every block

as follows.

Definition 1

The weight of the i-th node in a block is

(1− q)i

with q = 1
log logn , where the node-numbering starts from 0.

Hence, a block has nodes {0, . . . , logn− 1}.

PA 5 List Ranking

© Harald Räcke 77



Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.

PA 5 List Ranking

© Harald Räcke 78



Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler

PA 5 List Ranking

© Harald Räcke 79



Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner

PA 5 List Ranking

© Harald Räcke 80



Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.

PA 5 List Ranking

© Harald Räcke 81



In every iteration the weight drops by a factor of

(1− q/4) .

PA 5 List Ranking

© Harald Räcke 82



We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.

PA 5 List Ranking

© Harald Räcke 83



The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).

PA 5 List Ranking

© Harald Räcke 84



Each p-node is responsible for some other nodes; it has to

generate a weight reduction large enough so that the weight of

all nodes it is responsible for decreases by the desired factor.

An active node is responsible for all nodes that come after it in

its block.

A ruler is responsible for all nodes that come after it in its block

and for all its subjects.

Note that by this definition every node remaining in the list is

covered.

PA 5 List Ranking

© Harald Räcke 85



Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86



Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q



Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q



After s iterations the weight is at most

n
q logn

(
1− q

4

)s !
≤ n

logn
(1− q)logn

Choosing i = 5 logn the inequality holds for sufficiently large n.

PA 5 List Ranking

© Harald Räcke 89


	List Ranking

