
Prefix Sum

input: x[1] . . . x[n]
output: s[1] . . . s[n] with s[i] =∑ij=1 x[i] (w.r.t. operator ∗)

Algorithm 6 PrefixSum(n,x[1] . . . x[n])
1: // compute prefixsums; n = 2k

2: if n = 1 then s[1]← x[1]; return

3: for 1 ≤ i ≤ n/2 pardo

4: a[i]← x[2i− 1]∗ x[2i]
5: z[1], . . . , z[n/2]← PrefixSum(n/2, a[1] . . . a[n/2])
6: for 1 ≤ i ≤ n pardo

7: i even : s[i]← z[i/2]
8: i = 1 : s[1] = x[1]
9: i odd : s[i]← z[(i− 1)/2]∗ x[i]
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Prefix Sum

The algorithm uses work O(n) and time O(logn) for solving

Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time Ω(logn)
regardless of the number of processors.
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Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for

every list element; an operator ∗;

Output: for every list position ` the sum (w.r.t. ∗) of elements

after ` in the list (including `)

4 3 7 8 2 1 6 5

x[4] x[3] x[7] x[8] x[2] x[1] x[6] x[5]
S[4]=3 S[3]=7 S[7]=8 S[8]=2 S[2]=1 S[1]=6 S[6]=5 S[5]=5

PA 4.2 Parallel Prefix
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Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping
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4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 2

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).
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4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).
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4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x ∈ B and rank(x : B) for all x ∈ A.

can be done in O(logn) time with 2n processors by binary

search

Lemma 3

On a CREW PRAM, Merging can be done in O(logn) time and

O(n logn) work.

not optimal
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4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.
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4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal
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4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed

in time O(1) with n2 processors.

proof on board...
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4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n log logn).

proof on board...
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4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n).

proof on board...
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4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence

x0 < x1 < x2 < · · · < xk of elements. We want to insert

elements x1, . . . , xk into the tree (k� n).

time: O(log n); work: O(k log n)

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

a1 a4
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4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);
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Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

x3 x5 x9

a1 a4

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level
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4.5 Inserting into a (2, 3)-tree

ñ Step 3, works in phases; one phase for every level of the tree

ñ Step 4, works in rounds; in each round a different set of

elements is inserted

Observation

We can start with phase i of round r as long as phase i of round

r − 1 and (of course), phase i− 1 of round r has finished.

This is called Pipelining. Using this technique we can perform all

rounds in Step 4 in just O(logk+ logn) many parallel steps.
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4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with dlogne
colors.

Algorithm 9 BasicColoring

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: ki ← smallest bitpos where col(i) and col(S(i)) differ

4: col′(i)← 2k+ col(i)k
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4.6 Symmetry Breaking

1
4

2

15

45

6

8

1
0

1
1

12

9

13
1

3

7

v col k col′

1 0001 1 2
3 0011 2 4
7 0111 0 1

14 1110 2 5
2 0010 0 0

15 1111 0 1
4 0100 0 0
5 0101 0 1
6 0110 1 3
8 1000 1 2

10 1010 0 0
11 1011 0 1
12 1100 0 0

9 1001 2 4
13 1101 2 5



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.
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4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).
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4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in O(log∗n)
time and with O(n log∗n) work.

not work optimal
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4.6 Symmetry Breaking

Lemma 8

Given n integers in the range 0, . . . ,O(logn), there is an

algorithm that sorts these numbers in O(logn) time using a

linear number of operations.

Proof: Exercise!
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4.6 Symmetry Breaking

Algorithm 11 OptColor

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: apply BasicColoring once

4: sort vertices by colors

5: for ` = 2dlogne to 3 do

6: for all vertices i of color ` pardo

7: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}
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Lemma 9

A ring can be colored with 3 colors in time O(logn) and with

work O(n).

work optimal but not too fast
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