Prefix Sum

input: x[1]...x[n] ‘
output: s[1]...s[n] with s[i] = 3_; x[i] (w.r.t. operator *)

Algorithm 6 PrefixSum(n, x[1]...x[n])

1: // compute prefixsums; n = 2k

2: if n =1 then s[1] < x[1]; return

3: for1l <i<mn/2 pardo

4: ali] « x[2i— 1] % x[2i]

5: z[1],...,z[n/2] < PrefixSum(n/2,al[l]...a[n/2])
6: for 1 <i < n pardo

7 ieven : s[i] < z[i/2]

8 i=1 :s[1l]=x[1]

9 iodd :s[i] < z[(i—1)/2] * x[i]

e,
©Harald Racke

45

Prefix Sum

P00 H®-

t &t &t g

A A
—F-- Z1
A

+O+O>0~0

time steps
1

1

L‘

Sagag

®

x-values

Prefix Sum

The algorithm uses work @(n) and time @(logn) for solving
Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1
On a CREW PRAM a Prefix Sum requires running time Q(logn)
regardless of the number of processors.

m PA 4.1 Prefix Sum
©Harald Racke

47

Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for
every list element; an operator *;

Output: for every list position € the sum (w.r.t. *) of elements
after £ in the list (including ¥)

x[4] x[3] x[7] x[8] x[2] x[1] x[6] x[5]
S[4]=3 S[3]=7 S[7]=8 S[8]=2 S[2]=1 S[1]=6 S[6]=5 S[5]=5

m PA 4.2 Parallel Prefix
©Harald Racke

48

Parallel Prefix

Algorithm 7 ParallelPrefix

: for1 <i < n pardo

P[i] — S[i]

while S[i] = S[S[i]] do
x[i] — x[i] * x[S[i]]
Sli] = S[S[il]

if P[i] # i then S[i] — x[S(i)]

S U1 W N~

The algorithm runs in time O(logn).
It has work requirement @(nlogn). non-optimal

This technique is also known as pointer jumping

e,
©Harald Racke

4.2 Parallel Prefix

49

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1,...,a,) and

B = (by,...,by), compute the sorted squence C = (c1,...,Cn).
Definition 2

Let X = (x1,...,Xx;) be a sequence. The rank rank(y : X) of v in
Xis

rank(y: X) =|{x € X | x < y}|

For a sequence Y = (v1,...,Ys) we define
rank(Y : X) := (ry,...,7s) with r; = rank(y; : X).

4.3 Divide & Conquer — Merging

e
©Harald Racke

50

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (ay...an) and B = (by...by),
compute the sorted squence C = (¢1...cn).

Observation:
We can assume wlog. that elements in A and B are different.
Then for ¢; € C we have i = rank(c; : A U B).

This means we just need to determine rank(x : A U B) for all
elements!

Observe, that rank(x : A U B) = rank(x : A) + rank(x : B).

Clearly, for x € A we already know rank(x : A), and for x € B we
know rank(x : B).

4.3 Divide & Conquer — Merging

e,
©Harald Racke

51

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x € B and rank(x : B) for all x € A.
can be done in O(logn) time with 2n processors by binary
search

Lemma 3
On a CREW PRAM, Merging can be done in O(logn) time and
O(nlogn) work.

not optimal

4.3 Divide & Conquer — Merging

nne,
©Harald Racke

52

4.3 Divide & Conquer — Merging

A= (ai,...,an); B = (by,...,bn);
log n integral; k := n/logn integral;

Algorithm 8 GenerateSubproblems
Jjo—0

1
2. Jk—n

3: forl <i<k-1 pardo

4: Ji — rank(bjiogn : A)

5: for0 <i<k—-1 pardo

6 Bi < (bitogn+1,---+D(i+1)logn)
7 Ai<—(aji+1,...,ajm)

If C; is the merging of A; and B; then the sequence Cy...Cy_1 is
a sorted sequence.

m PA 4.3 Divide & Conquer — Merging
©Harald Racke

53

4.3 Divide & Conquer — Merging
We can generate the subproblems in time @O (logn) and work
On).
Note that in a sub-problem B; has length log n.

If we run the algorithm again for every subproblem, (where A;
takes the role of B) we can in time O(loglogn) and work O(n)
generate subproblems where A; and B; have both length at
most log n.

Such a subproblem can be solved by a single processor in time
O(logn) and work O(|A;| + |B;l).

Parallelizing the last step gives total work O(n) and time
O(logn).

the resulting algorithm is work optimal

m PA 4.3 Divide & Conquer — Merging
©Harald Racke

54

4.4 Maximum Computation

Lemma 4
On a CRCW PRAM the maximum of n numbers can be computed
in time ©(1) with n? processors.

proof on board...

m PA 4.4 Maximum Computation
©Harald Racke

55

4.4 Maximum Computation

Lemma 5
On a CRCW PRAM the maximum of n numbers can be computed
in time O(loglogn) with n processors and work O (nloglogn).

proof on board...

m PA 4.4 Maximum Computation
©Harald Racke

56

4.4 Maximum Computation

Lemma 6
On a CRCW PRAM the maximum of n numbers can be computed
in time O(loglogn) with n processors and work O (n).

proof on board...

m PA 4.4 Maximum Computation
©Harald Racke

57

4.5 Inserting into a (2, 3)-tree

Given a (2, 3)-tree with n elements, and a sequence

X0 < X1 < X2 < ---<xy of elements. We want to insert
elements x1,..., X into the tree (k < n).

time: @ (log n); work: O (klog n)

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

58

4.5 Inserting into a (2, 3)-tree

1. determine for every x; the leaf element before which it has
to be inserted
time: O(logn); work: @(klogn); CREW PRAM

all x;’s that have to be inserted before the same element
form a chain

2. determine the largest/smallest/middle element of every
chain
time: O(1); work: O(k);

3. insert the middle element of every chain
compute new chains
time: O(logn); work: O(k;logn); k= #inserted elements
(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds
time: O(lognlogk); work: O(klogn);

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

59

Step 3

» each internal node is split into at most two parts

v

each split operation promotes at most one element

» hence, on every level we want to insert at most one element
per successor pointer

» we can use the same routine for every level

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

60

4.5 Inserting into a (2, 3)-tree

» Step 3, works in phases; one phase for every level of the tree

» Step 4, works in rounds; in each round a different set of
elements is inserted

Observation
We can start with phase i of round » as long as phase i of round
¥ — 1 and (of course), phase i — 1 of round 7 has finished.

This is called Pipelining. Using this technique we can perform all
rounds in Step 4 in just O(log k + log n) many parallel steps.

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

61

4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with [logn|
colors.

Algorithm 9 BasicColoring

1: for 1 <i <n pardo

2 col(i) — i

3: ki — smallest bitpos where col(i) and col(S(i)) differ
4 col’ (i) < 2k + col(i)

m PA 4.6 Symmetry Breaking
©Harald Ricke 62

4.6 Symmetry Breaking

/® @) v col k col’

1| 0001 1 2

/@ 3| 0011 2 4
() 7| o 0 1
14 | 1110 2 5

2 | o010 0 0

® 15 | 11 0 1
S 4| 0100 0 0

5 | o101 0 1

6| 0110 1 3

8 | 1000 1 2

10 | 1010 0 0

) 11 | 1011 0 1
12 | 1100 0 0

) ®/' 9 | 1001 2 4
E— 13 | 1101 2 5

4.6 Symmetry Breaking
Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most
2(t-1)+1
and bit-length at most

[log, (2(t —1) + 1)1 < [logo(t — 1)1+ 1 < [log,(t)]+1

Applying the algorithm repeatedly generates a constant number
of colors after log* n operations.

: Note that the first inequality 1
1 holds because 2(t — 1) — 1 is :
1

m PA 4.6 Symmetry Breaking
©Harald Racke 64

4.6 Symmetry Breaking

As long as the bit-length t > 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with
colors in the range 0,...,5 = 2t — 1.

We can improve to a 3-coloring by successively re-coloring nodes
from a color-class:

Algorithm 10 ReColor

1: for{ —5to3

2 for 1 <i < n pardo

3: if col(i) = ¥ then

4 col(i) — min{{0,1,2} \ {col(P[i]),col(S[i])}}

This requires time @(1) and work O(n).

m PA 4.6 Symmetry Breaking
©Harald Ricke 65

4.6 Symmetry Breaking

Lemma 7
We can color vertices in a ring with three colors in ©(log* n)
time and with O(nlog™ n) work.

not work optimal

m PA 4.6 Symmetry Breaking
©Harald Ricke 66

4.6 Symmetry Breaking

Lemma 8

Given n integers in the range O, ...,O(logn), there is an
algorithm that sorts these numbers in O(logn) time using a
linear number of operations.

Proof: Exercise!

m PA 4.6 Symmetry Breaking
©Harald Racke 67

4.6 Symmetry Breaking

Algorithm 11 OptColor
: for 1 <i <n pardo
col(i) — 1
apply BasicColoring once
sort vertices by colors
for £ = 2[logn] to 3 do
for all vertices i of color £ pardo
col(i) < min{{0,1,2} \ {col(P[i]),col(S[i])}}

N OO v AW N =

:We can perform Lines 6 and 7 in time O(ny) only because we sorted before. In general a state- :
: ment like “for constraint pardo” should only contain a contraint on the id’s of the processors :
1 but not something complicated (like the color) which has to be checked and, hence, induces
: work. Because of the sorting we can transform this complicated constraint into a constraint on :
| just the processor id’s.

m PA 4.6 Symmetry Breaking
©Harald Racke 68

Lemma 9
A ring can be colored with 3 colors in time O (logn) and with
work O(n).

work optimal but not too fast

m PA 4.6 Symmetry Breaking
©Harald Ricke

69

	Basic Algorithms
	Prefix Sum
	Parallel Prefix
	Divide & Conquer — Merging
	Maximum Computation
	Inserting into a (2,3)-tree
	Symmetry Breaking

