
Part III

PRAM Algorithms

PA

© Harald Räcke 44/295

Prefix Sum

input: x[1] . . . x[n]
output: s[1] . . . s[n] with s[i] =∑ij=1 x[i] (w.r.t. operator ∗)

Algorithm 6 PrefixSum(n,x[1] . . . x[n])
1: // compute prefixsums; n = 2k

2: if n = 1 then s[1]← x[1]; return

3: for 1 ≤ i ≤ n/2 pardo

4: a[i]← x[2i− 1]∗ x[2i]
5: z[1], . . . , z[n/2]← PrefixSum(n/2, a[1] . . . a[n/2])
6: for 1 ≤ i ≤ n pardo

7: i even : s[i]← z[i/2]
8: i = 1 : s[1] = x[1]
9: i odd : s[i]← z[(i− 1)/2]∗ x[i]

PA 4.1 Prefix Sum

© Harald Räcke 45/295

Prefix Sum

input: x[1] . . . x[n]
output: s[1] . . . s[n] with s[i] =∑ij=1 x[i] (w.r.t. operator ∗)

Algorithm 6 PrefixSum(n,x[1] . . . x[n])
1: // compute prefixsums; n = 2k

2: if n = 1 then s[1]← x[1]; return

3: for 1 ≤ i ≤ n/2 pardo

4: a[i]← x[2i− 1]∗ x[2i]
5: z[1], . . . , z[n/2]← PrefixSum(n/2, a[1] . . . a[n/2])
6: for 1 ≤ i ≤ n pardo

7: i even : s[i]← z[i/2]
8: i = 1 : s[1] = x[1]
9: i odd : s[i]← z[(i− 1)/2]∗ x[i]

PA 4.1 Prefix Sum

© Harald Räcke 45/295

Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

x-values

s-values

ti
m

e
st

ep
s

Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

x-values

s-values

ti
m

e
st

ep
s

Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1 a2 a3 a4 a5 a6 a7 a8

16

x-values

s-values

ti
m

e
st

ep
s

Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1 a2 a3 a4 a5 a6 a7 a8

z1 z2 z3 z4 z5 z6 z7 z8

16

x-values

s-values

ti
m

e
st

ep
s

Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1 a2 a3 a4 a5 a6 a7 a8

z1 z2 z3 z4 z5 z6 z7 z8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1616

x-values

s-values

ti
m

e
st

ep
s

Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1 a2 a3 a4 a5 a6 a7 a8

ā1 ā2 ā3 ā4

â1 â2

a′1

z′1

ẑ1 ẑ2

z̄1 z̄2 z̄3 z̄4

z1 z2 z3 z4 z5 z6 z7 z8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1616

x-values

s-values

ti
m

e
st

ep
s

Prefix Sum

The algorithm uses work O(n) and time O(logn) for solving

Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time Ω(logn)
regardless of the number of processors.

PA 4.1 Prefix Sum

© Harald Räcke 47/295

Prefix Sum

The algorithm uses work O(n) and time O(logn) for solving

Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time Ω(logn)
regardless of the number of processors.

PA 4.1 Prefix Sum

© Harald Räcke 47/295

Prefix Sum

The algorithm uses work O(n) and time O(logn) for solving

Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time Ω(logn)
regardless of the number of processors.

PA 4.1 Prefix Sum

© Harald Räcke 47/295

Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for

every list element; an operator ∗;

Output: for every list position ` the sum (w.r.t. ∗) of elements

after ` in the list (including `)

4 3 7 8 2 1 6 5

x[4] x[3] x[7] x[8] x[2] x[1] x[6] x[5]
S[4]=3 S[3]=7 S[7]=8 S[8]=2 S[2]=1 S[1]=6 S[6]=5 S[5]=5

PA 4.2 Parallel Prefix

© Harald Räcke 48/295

Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295

Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295

Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295

Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 2

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 50/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 2

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 50/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 2

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 50/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 2

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 50/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 51/295

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x ∈ B and rank(x : B) for all x ∈ A.

can be done in O(logn) time with 2n processors by binary

search

Lemma 3

On a CREW PRAM, Merging can be done in O(logn) time and

O(n logn) work.

not optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 52/295

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x ∈ B and rank(x : B) for all x ∈ A.

can be done in O(logn) time with 2n processors by binary

search

Lemma 3

On a CREW PRAM, Merging can be done in O(logn) time and

O(n logn) work.

not optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 52/295

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x ∈ B and rank(x : B) for all x ∈ A.

can be done in O(logn) time with 2n processors by binary

search

Lemma 3

On a CREW PRAM, Merging can be done in O(logn) time and

O(n logn) work.

not optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 52/295

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x ∈ B and rank(x : B) for all x ∈ A.

can be done in O(logn) time with 2n processors by binary

search

Lemma 3

On a CREW PRAM, Merging can be done in O(logn) time and

O(n logn) work.

not optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 52/295

4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 53/295

4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 53/295

4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 53/295

4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 53/295

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54/295

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54/295

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54/295

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54/295

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54/295

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54/295

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed

in time O(1) with n2 processors.

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 55/295

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed

in time O(1) with n2 processors.

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 55/295

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n log logn).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 56/295

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n log logn).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 56/295

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 57/295

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 57/295

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence

x0 < x1 < x2 < · · · < xk of elements. We want to insert

elements x1, . . . , xk into the tree (k� n).

time: O(log n); work: O(k log n)

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

a1 a4

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 58/295

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence

x0 < x1 < x2 < · · · < xk of elements. We want to insert

elements x1, . . . , xk into the tree (k� n).

time: O(log n); work: O(k log n)

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

a1 a4

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 58/295

4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 59/295

4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 59/295

4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 59/295

4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 59/295

4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 59/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

x3 x5 x9

a1 a4

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a1 a4

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2 x5 a3 x9

x3 a2 x5 a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60/295

4.5 Inserting into a (2, 3)-tree

ñ Step 3, works in phases; one phase for every level of the tree

ñ Step 4, works in rounds; in each round a different set of

elements is inserted

Observation

We can start with phase i of round r as long as phase i of round

r − 1 and (of course), phase i− 1 of round r has finished.

This is called Pipelining. Using this technique we can perform all

rounds in Step 4 in just O(logk+ logn) many parallel steps.

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 61/295

4.5 Inserting into a (2, 3)-tree

ñ Step 3, works in phases; one phase for every level of the tree

ñ Step 4, works in rounds; in each round a different set of

elements is inserted

Observation

We can start with phase i of round r as long as phase i of round

r − 1 and (of course), phase i− 1 of round r has finished.

This is called Pipelining. Using this technique we can perform all

rounds in Step 4 in just O(logk+ logn) many parallel steps.

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 61/295

4.5 Inserting into a (2, 3)-tree

ñ Step 3, works in phases; one phase for every level of the tree

ñ Step 4, works in rounds; in each round a different set of

elements is inserted

Observation

We can start with phase i of round r as long as phase i of round

r − 1 and (of course), phase i− 1 of round r has finished.

This is called Pipelining. Using this technique we can perform all

rounds in Step 4 in just O(logk+ logn) many parallel steps.

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 61/295

4.5 Inserting into a (2, 3)-tree

ñ Step 3, works in phases; one phase for every level of the tree

ñ Step 4, works in rounds; in each round a different set of

elements is inserted

Observation

We can start with phase i of round r as long as phase i of round

r − 1 and (of course), phase i− 1 of round r has finished.

This is called Pipelining. Using this technique we can perform all

rounds in Step 4 in just O(logk+ logn) many parallel steps.

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 61/295

4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with dlogne
colors.

Algorithm 9 BasicColoring

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: ki ← smallest bitpos where col(i) and col(S(i)) differ

4: col′(i)← 2k+ col(i)k

PA 4.6 Symmetry Breaking

© Harald Räcke 62/295

4.6 Symmetry Breaking

1
4

2

15

45

6

8

1
0

1
1

12

9

13
1

3

7

v col k col′

1 0001 1 2
3 0011 2 4
7 0111 0 1

14 1110 2 5
2 0010 0 0

15 1111 0 1
4 0100 0 0
5 0101 0 1
6 0110 1 3
8 1000 1 2

10 1010 0 0
11 1011 0 1
12 1100 0 0

9 1001 2 4
13 1101 2 5

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295

4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295

4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295

4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295

4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295

4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in O(log∗n)
time and with O(n log∗n) work.

not work optimal

PA 4.6 Symmetry Breaking

© Harald Räcke 66/295

4.6 Symmetry Breaking

Lemma 8

Given n integers in the range 0, . . . ,O(logn), there is an

algorithm that sorts these numbers in O(logn) time using a

linear number of operations.

Proof: Exercise!

PA 4.6 Symmetry Breaking

© Harald Räcke 67/295

4.6 Symmetry Breaking

Algorithm 11 OptColor

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: apply BasicColoring once

4: sort vertices by colors

5: for ` = 2dlogne to 3 do

6: for all vertices i of color ` pardo

7: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

PA 4.6 Symmetry Breaking

© Harald Räcke 68/295

Lemma 9

A ring can be colored with 3 colors in time O(logn) and with

work O(n).

work optimal but not too fast

PA 4.6 Symmetry Breaking

© Harald Räcke 69/295

List Ranking

Input:

A list given by successor pointers;

4 5 7 3 1 2 6 8 9

Output:

For every node number of hops to end of the list;

4 5 7 3 1 2 6 8 9

8 7 6 5 4 3 2 1 0

Observation:

Special case of parallel prefix

PA 5 List Ranking

© Harald Räcke 70/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

1. Given a list with values; perhaps from previous

iterations.

The list is given via predecessor pointers P(i) and

successor pointers S(i).
S(4) = 5, S(2) = 6, P(3) = 7, etc.

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

2. Find an independent set; time: O(logn); work: O(n).
The independent set should contain a constant fraction

of the vertices.

Color vertices; take local minima

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

3. Splice the independent set out of the list;

At the independent set vertices the array still contains

old values for P(i) and S(i);

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

4. Compress remaining n′ nodes into a new array of n′

entries.

The index positions can be computed by a prefix sum

in time O(logn) and work O(n)
Pointers can then be adjusted in time O(1).

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

5. Solve the problem on the remaining list.

If current size is less than n/ logn do pointer jumping:

time O(logn); work O(n).
Otherwise continue shrinking the list by finding an

independent set

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

6. Map the values back into the larger list. Time: O(1);
Work: O(n)

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

7. Compute values for independent set nodes. Time:

O(1); Work: O(1).
8. Splice nodes back into list. Time: O(1); Work: O(1).

PA 5 List Ranking

© Harald Räcke 71/295

List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

PA 5 List Ranking

© Harald Räcke 71/295

We need O(log logn) shrinking iterations until the size of the

remaining list reaches O(n/ logn).

Each shrinking iteration takes time O(logn).

The work for all shrinking operations is just O(n), as the size of

the list goes down by a constant factor in each round.

List Ranking can be solved in time O(logn log logn) and work

O(n) on an EREW-PRAM.

PA 5 List Ranking

© Harald Räcke 72/295

We need O(log logn) shrinking iterations until the size of the

remaining list reaches O(n/ logn).

Each shrinking iteration takes time O(logn).

The work for all shrinking operations is just O(n), as the size of

the list goes down by a constant factor in each round.

List Ranking can be solved in time O(logn log logn) and work

O(n) on an EREW-PRAM.

PA 5 List Ranking

© Harald Räcke 72/295

We need O(log logn) shrinking iterations until the size of the

remaining list reaches O(n/ logn).

Each shrinking iteration takes time O(logn).

The work for all shrinking operations is just O(n), as the size of

the list goes down by a constant factor in each round.

List Ranking can be solved in time O(logn log logn) and work

O(n) on an EREW-PRAM.

PA 5 List Ranking

© Harald Räcke 72/295

We need O(log logn) shrinking iterations until the size of the

remaining list reaches O(n/ logn).

Each shrinking iteration takes time O(logn).

The work for all shrinking operations is just O(n), as the size of

the list goes down by a constant factor in each round.

List Ranking can be solved in time O(logn log logn) and work

O(n) on an EREW-PRAM.

PA 5 List Ranking

© Harald Räcke 72/295

Optimal List Ranking

In order to reduce the work we have to improve the shrinking of

the list to O(n/ logn) nodes.

After this we apply pointer jumping

PA 5 List Ranking

© Harald Räcke 73/295

Optimal List Ranking

In order to reduce the work we have to improve the shrinking of

the list to O(n/ logn) nodes.

After this we apply pointer jumping

PA 5 List Ranking

© Harald Räcke 73/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3

p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 172 6 14 185 175 17

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3

p2p1 p4 p5

1 5 9 13 17 21

11 9 215 13 172 6 14 185 175 17

ñ some nodes are active;

ñ active nodes without neighbouring active nodes are

isolated;

ñ the others form sublists;

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3

p2p1 p4 p5

1 5 9 13 17 2111

9 215 13 172 6 14 185 175 17

1 delete isolated nodes from the list;

2 color each sublist with O(log logn) colors; time: O(1);
work: O(n);

label local minima w.r.t. color as ruler; others as subject

first node of sublist is ruler; needs to be changed!!!

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3

p2p1 p4 p5

1 5 9 13 17 2111

9 215 13 172 6 14 185 175 17

1 delete isolated nodes from the list;

2 color each sublist with O(log logn) colors; time: O(1);
work: O(n);

label local minima w.r.t. color as ruler; others as subject

first node of sublist is ruler; needs to be changed!!!

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3

p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 17

2 6 14 185 175 17

1 delete isolated nodes from the list;

2 color each sublist with O(log logn) colors; time: O(1);
work: O(n);
label local minima w.r.t. color as ruler; others as subject

first node of sublist is ruler; needs to be changed!!!

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2

p3 p3p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 17

2 6 14 185 175 17

3 advance pointers of removed nodes and of subjects;

make new nodes active

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2

p3 p3p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 172 6 14 18

5 175 17

3 advance pointers of removed nodes and of subjects;

make new nodes active

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2

p3 p3p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 172 6 14 185 175 17

New Iteration

0. every ruler deletes its next subject;

rulers without a subject become active

PA 5 List Ranking

© Harald Räcke 74/295

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2

p3 p3p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 172 6 14 185 175 17

PA 5 List Ranking

© Harald Räcke 74/295

Optimal List Ranking

Each iteration requires constant time and work O(n/ logn),
because we just work on one node in every block.

We need to prove that we just require O(logn) iterations to

reduce the size of the list to O(n/ logn).

PA 5 List Ranking

© Harald Räcke 75/295

Optimal List Ranking

Each iteration requires constant time and work O(n/ logn),
because we just work on one node in every block.

We need to prove that we just require O(logn) iterations to

reduce the size of the list to O(n/ logn).

PA 5 List Ranking

© Harald Räcke 75/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted

PA 5 List Ranking

© Harald Räcke 76/295

Analysis

For the analysis we assign a weight to every node in every block

as follows.

Definition 10

The weight of the i-th node in a block is

(1− q)i

with q = 1
log logn , where the node-numbering starts from 0.

Hence, a block has nodes {0, . . . , logn− 1}.

PA 5 List Ranking

© Harald Räcke 77/295

Analysis

For the analysis we assign a weight to every node in every block

as follows.

Definition 10

The weight of the i-th node in a block is

(1− q)i

with q = 1
log logn , where the node-numbering starts from 0.

Hence, a block has nodes {0, . . . , logn− 1}.

PA 5 List Ranking

© Harald Räcke 77/295

Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.

PA 5 List Ranking

© Harald Räcke 78/295

Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.

PA 5 List Ranking

© Harald Räcke 78/295

Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.

PA 5 List Ranking

© Harald Räcke 78/295

Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.

PA 5 List Ranking

© Harald Räcke 78/295

Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.

PA 5 List Ranking

© Harald Räcke 78/295

Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler

PA 5 List Ranking

© Harald Räcke 79/295

Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler

PA 5 List Ranking

© Harald Räcke 79/295

Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler

PA 5 List Ranking

© Harald Räcke 79/295

Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler

PA 5 List Ranking

© Harald Räcke 79/295

Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler

PA 5 List Ranking

© Harald Räcke 79/295

Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner

PA 5 List Ranking

© Harald Räcke 80/295

Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner

PA 5 List Ranking

© Harald Räcke 80/295

Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner

PA 5 List Ranking

© Harald Räcke 80/295

Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner

PA 5 List Ranking

© Harald Räcke 80/295

Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner

PA 5 List Ranking

© Harald Räcke 80/295

Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.

PA 5 List Ranking

© Harald Räcke 81/295

Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.

PA 5 List Ranking

© Harald Räcke 81/295

Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.

PA 5 List Ranking

© Harald Räcke 81/295

Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.

PA 5 List Ranking

© Harald Räcke 81/295

Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.

PA 5 List Ranking

© Harald Räcke 81/295

In every iteration the weight drops by a factor of

(1− q/4) .

PA 5 List Ranking

© Harald Räcke 82/295

We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.

PA 5 List Ranking

© Harald Räcke 83/295

We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.

PA 5 List Ranking

© Harald Räcke 83/295

We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.

PA 5 List Ranking

© Harald Räcke 83/295

We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.

PA 5 List Ranking

© Harald Räcke 83/295

We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.

PA 5 List Ranking

© Harald Räcke 83/295

The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).

PA 5 List Ranking

© Harald Räcke 84/295

The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).

PA 5 List Ranking

© Harald Räcke 84/295

The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).

PA 5 List Ranking

© Harald Räcke 84/295

The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).

PA 5 List Ranking

© Harald Räcke 84/295

The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).

PA 5 List Ranking

© Harald Räcke 84/295

Each p-node is responsible for some other nodes; it has to

generate a weight reduction large enough so that the weight of

all nodes it is responsible for decreases by the desired factor.

An active node is responsible for all nodes that come after it in

its block.

A ruler is responsible for all nodes that come after it in its block

and for all its subjects.

Note that by this definition every node remaining in the list is

covered.

PA 5 List Ranking

© Harald Räcke 85/295

Each p-node is responsible for some other nodes; it has to

generate a weight reduction large enough so that the weight of

all nodes it is responsible for decreases by the desired factor.

An active node is responsible for all nodes that come after it in

its block.

A ruler is responsible for all nodes that come after it in its block

and for all its subjects.

Note that by this definition every node remaining in the list is

covered.

PA 5 List Ranking

© Harald Räcke 85/295

Each p-node is responsible for some other nodes; it has to

generate a weight reduction large enough so that the weight of

all nodes it is responsible for decreases by the desired factor.

An active node is responsible for all nodes that come after it in

its block.

A ruler is responsible for all nodes that come after it in its block

and for all its subjects.

Note that by this definition every node remaining in the list is

covered.

PA 5 List Ranking

© Harald Räcke 85/295

Each p-node is responsible for some other nodes; it has to

generate a weight reduction large enough so that the weight of

all nodes it is responsible for decreases by the desired factor.

An active node is responsible for all nodes that come after it in

its block.

A ruler is responsible for all nodes that come after it in its block

and for all its subjects.

Note that by this definition every node remaining in the list is

covered.

PA 5 List Ranking

© Harald Räcke 85/295

Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to

∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86/295

Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to

∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86/295

Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to

∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86/295

Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to∑
i<j<logn

(1− q)j

≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86/295

Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86/295

Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).

PA 5 List Ranking

© Harald Räcke 86/295

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q

=
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′

= Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2

≤ (1− q
3
)Q

Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q

After s iterations the weight is at most

n
q logn

(
1− q

4

)s !≤ n
logn

(1− q)logn

Choosing i = 5 logn the inequality holds for sufficiently large n.

PA 5 List Ranking

© Harald Räcke 89/295

Tree Algorithms

12

3

4

5

6

78

9

9

8

7

6

5

4

3

2

1 2 3 4

1 5 6 7

1

1

2

2

2 8 9

7

7

Euler Circuits

Every node v fixes an arbitrary ordering among its adjacent

nodes:

u0, u1, . . . , ud−1

We obtain an Euler tour by setting

succ((ui, v)) = (v,u(i+1)mod d)

PA 6 Tree Algorithms

© Harald Räcke 91/295

Euler Circuits

Lemma 11

An Euler circuit can be computed in constant time O(1) with

O(n) operations.

PA 6 Tree Algorithms

© Harald Räcke 92/295

Euler Circuits — Applications

Rooting a tree

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 1 for every edge;

ñ perform parallel prefix; let s[·] be the result array

ñ if s[(u,v)] < s[(v,u)] then u is parent of v;

PA 6 Tree Algorithms

© Harald Räcke 93/295

Euler Circuits — Applications

Postorder Numbering

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 1 for every edge (v,parent(v))
ñ assign x[e] = 0 for every edge (parent(v), v)
ñ perform parallel prefix

ñ post(v) = s[(v,parent(v))]; post(r) = n

PA 6 Tree Algorithms

© Harald Räcke 94/295

Euler Circuits — Applications

Level of nodes

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = −1 for every edge (v,parent(v))
ñ assign x[e] = 1 for every edge (parent(v), v)
ñ perform parallel prefix

ñ level(v) = s[(parent(v), v)]; level(r) = 0

PA 6 Tree Algorithms

© Harald Räcke 95/295

Euler Circuits — Applications

Number of descendants

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 0 for every edge (parent(v), v)
ñ assign x[e] = 1 for every edge (v,parent(v)), v ≠ r
ñ perform parallel prefix

ñ size(v) = s[(v,parent(v))]− s[(parent(v), v)]

PA 6 Tree Algorithms

© Harald Räcke 96/295

Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))

4

3

1 2

8 9

5

6 8

PA 6 Tree Algorithms

© Harald Räcke 97/295

Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))

4

3

1 2

8 9

5

6 8

PA 6 Tree Algorithms

© Harald Räcke 97/295

Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))

4

3

1 2

8 9

5

6 8

PA 6 Tree Algorithms

© Harald Räcke 97/295

Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))

4

3

1

2

8 9

5

6 8

PA 6 Tree Algorithms

© Harald Räcke 97/295

Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))

4

3

1

2

8 9

5

6 8

PA 6 Tree Algorithms

© Harald Räcke 97/295

We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs

PA 6 Tree Algorithms

© Harald Räcke 98/295

We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs

PA 6 Tree Algorithms

© Harald Räcke 98/295

We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs

PA 6 Tree Algorithms

© Harald Räcke 98/295

We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs

PA 6 Tree Algorithms

© Harald Räcke 98/295

We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs

PA 6 Tree Algorithms

© Harald Räcke 98/295

Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves

PA 6 Tree Algorithms

© Harald Räcke 99/295

Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves

PA 6 Tree Algorithms

© Harald Räcke 99/295

Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves

PA 6 Tree Algorithms

© Harald Räcke 99/295

Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves

PA 6 Tree Algorithms

© Harald Räcke 99/295

Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves

PA 6 Tree Algorithms

© Harald Räcke 99/295

Observations

ñ the rake operation does not change the order of leaves

ñ two leaves that are siblings do not perform a rake operation

in the same round because one is even and one odd at the

start of the round

ñ two leaves that have adjacent parents either have different

parity (even/odd) or they differ in the type of child

(left/right)

PA 6 Tree Algorithms

© Harald Räcke 100/295

Observations

ñ the rake operation does not change the order of leaves

ñ two leaves that are siblings do not perform a rake operation

in the same round because one is even and one odd at the

start of the round

ñ two leaves that have adjacent parents either have different

parity (even/odd) or they differ in the type of child

(left/right)

PA 6 Tree Algorithms

© Harald Räcke 100/295

Observations

ñ the rake operation does not change the order of leaves

ñ two leaves that are siblings do not perform a rake operation

in the same round because one is even and one odd at the

start of the round

ñ two leaves that have adjacent parents either have different

parity (even/odd) or they differ in the type of child

(left/right)

PA 6 Tree Algorithms

© Harald Räcke 100/295

Cases, when the left edge btw. p(u) and p(v) is a left-child

edge.

1 2

u

v

u

2

3 4

v

PA 6 Tree Algorithms

© Harald Räcke 101/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16

PA 6 Tree Algorithms

© Harald Räcke 102/295

ñ one iteration can be performed in constant time with O(|A|)
processors, where A is the array of leaves;

ñ hence, all iterations can be performed in O(logn) time and

O(n) work;

ñ the intial parallel prefix also requires time O(logn) and

work O(n)

PA 6 Tree Algorithms

© Harald Räcke 103/295

ñ one iteration can be performed in constant time with O(|A|)
processors, where A is the array of leaves;

ñ hence, all iterations can be performed in O(logn) time and

O(n) work;

ñ the intial parallel prefix also requires time O(logn) and

work O(n)

PA 6 Tree Algorithms

© Harald Räcke 103/295

ñ one iteration can be performed in constant time with O(|A|)
processors, where A is the array of leaves;

ñ hence, all iterations can be performed in O(logn) time and

O(n) work;

ñ the intial parallel prefix also requires time O(logn) and

work O(n)

PA 6 Tree Algorithms

© Harald Räcke 103/295

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing

additions and multiplications.

+

∗

∗

A1 A2

+

A3 A4

+

+

A5 A6

∗

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

∗ ∗

If the tree is not balanced this may be time-consuming.

PA 6 Tree Algorithms

© Harald Räcke 104/295

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing

additions and multiplications.

+

∗

∗

A1 A2

+

A3 A4

+

+

A5 A6

∗

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

∗ ∗

If the tree is not balanced this may be time-consuming.

PA 6 Tree Algorithms

© Harald Räcke 104/295

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing

additions and multiplications.

+

∗

∗

A1 A2

+

A3 A4

+

+

A5 A6

∗

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

∗ ∗

If the tree is not balanced this may be time-consuming.

PA 6 Tree Algorithms

© Harald Räcke 104/295

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing

additions and multiplications.

+

∗

∗

A1 A2

+

A3 A4

+

+

A5 A6

∗

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

∗ ∗

If the tree is not balanced this may be time-consuming.

PA 6 Tree Algorithms

© Harald Räcke 104/295

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.

PA 6 Tree Algorithms

© Harald Räcke 105/295

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.

PA 6 Tree Algorithms

© Harald Räcke 105/295

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.

PA 6 Tree Algorithms

© Harald Räcke 105/295

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.

PA 6 Tree Algorithms

© Harald Räcke 105/295

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.

PA 6 Tree Algorithms

© Harald Räcke 105/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1 +

x2 x3

∗

x4 x5

r

u

v w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1

+

x2 x3

∗

x4 x5

r

w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

Rake Operation

∗

+

x1

+

x2 x3

∗

x4 x5

r

w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w

PA 6 Tree Algorithms

© Harald Räcke 106/295

If we change the a and b-values during a rake-operation

according to the previous slide we can calculate the value of the

root in the end.

Lemma 12

We can evaluate an arithmetic expression tree in time O(logn)
and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can

also compute the value at each node in the tree.

PA 6 Tree Algorithms

© Harald Räcke 107/295

If we change the a and b-values during a rake-operation

according to the previous slide we can calculate the value of the

root in the end.

Lemma 12

We can evaluate an arithmetic expression tree in time O(logn)
and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can

also compute the value at each node in the tree.

PA 6 Tree Algorithms

© Harald Räcke 107/295

If we change the a and b-values during a rake-operation

according to the previous slide we can calculate the value of the

root in the end.

Lemma 12

We can evaluate an arithmetic expression tree in time O(logn)
and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can

also compute the value at each node in the tree.

PA 6 Tree Algorithms

© Harald Räcke 107/295

Lemma 13

We compute tree functions for arbitrary trees in time O(logn)
and a linear number of operations.

proof on board...

PA 6 Tree Algorithms

© Harald Räcke 108/295

In the LCA (least common ancestor) problem we are given a tree

and the goal is to design a data-structure that answers

LCA-queries in constant time.

PA 6 Tree Algorithms

© Harald Räcke 109/295

Least Common Ancestor

LCAs on complete binary trees (inorder numbering):

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

1000

0100

0010

0001 0011

0110

0101 0111

1100

1010

1001 1011

1110

1101 1111

The least common ancestor of u and v is

z1 z2 . . . zi 1 0 . . . 0

where zi+1 is the first bit-position in which u and v differ.

PA 6 Tree Algorithms

© Harald Räcke 110/295

Least Common Ancestor

1

2

3 4

5 6 7

8 9

1 2 3 2 4 5 4 6 4 7 4 2 1 8 1 9 1

0 1 2 1 2 3 2 3 2 3 2 1 0 1 0 1 0

nodes

levels

PA 6 Tree Algorithms

© Harald Räcke 111/295

`(v) is index of first appearance of v in node-sequence.

r(v) is index of last appearance of v in node-squence.

`(v) and r(v) can be computed in constant time, given the

node- and level-sequence.

PA 6 Tree Algorithms

© Harald Räcke 112/295

Least Common Ancestor

Lemma 14

1. u is ancestor of v iff `(u) < `(v) < r(u)

2. u and v are not related iff either r(u) < `(v) or

`(u) < r(v)

3. suppose r(u) < `(v) then LCA(u,v) is vertex with

minimum level over interval [r(u), `(v)].

PA 6 Tree Algorithms

© Harald Räcke 113/295

Range Minima Problem

Given an array A[1 . . . n], a range minimum query (`, r) consists

of a left index ` ∈ {1, . . . , n} and a right index r ∈ {1, . . . , n}.

The answer has to return the index of the minimum element in

the subsequence A[` . . . r].

The goal in the range minima problem is to preprocess the array

such that range minima queries can be answered quickly

(constant time).

PA 6 Tree Algorithms

© Harald Räcke 114/295

Range Minima Problem

Given an array A[1 . . . n], a range minimum query (`, r) consists

of a left index ` ∈ {1, . . . , n} and a right index r ∈ {1, . . . , n}.

The answer has to return the index of the minimum element in

the subsequence A[` . . . r].

The goal in the range minima problem is to preprocess the array

such that range minima queries can be answered quickly

(constant time).

PA 6 Tree Algorithms

© Harald Räcke 114/295

Range Minima Problem

Given an array A[1 . . . n], a range minimum query (`, r) consists

of a left index ` ∈ {1, . . . , n} and a right index r ∈ {1, . . . , n}.

The answer has to return the index of the minimum element in

the subsequence A[` . . . r].

The goal in the range minima problem is to preprocess the array

such that range minima queries can be answered quickly

(constant time).

PA 6 Tree Algorithms

© Harald Räcke 114/295

Range Minima Problem

Given an array A[1 . . . n], a range minimum query (`, r) consists

of a left index ` ∈ {1, . . . , n} and a right index r ∈ {1, . . . , n}.

The answer has to return the index of the minimum element in

the subsequence A[` . . . r].

The goal in the range minima problem is to preprocess the array

such that range minima queries can be answered quickly

(constant time).

PA 6 Tree Algorithms

© Harald Räcke 114/295

Observation

Given an algorithm for solving the range minima problem in time

T(n) and work W(n) we can obtain an algorithm that solves the

LCA-problem in time O(T(n)+ logn) and work O(n+W(n)).

Remark

In the sequential setting the LCA-problem and the range minima

problem are equivalent. This is not necessarily true in the

parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted

range minima problem where two successive elements in the

array just differ by +1 or −1.

PA 6 Tree Algorithms

© Harald Räcke 115/295

Observation

Given an algorithm for solving the range minima problem in time

T(n) and work W(n) we can obtain an algorithm that solves the

LCA-problem in time O(T(n)+ logn) and work O(n+W(n)).

Remark

In the sequential setting the LCA-problem and the range minima

problem are equivalent. This is not necessarily true in the

parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted

range minima problem where two successive elements in the

array just differ by +1 or −1.

PA 6 Tree Algorithms

© Harald Räcke 115/295

Observation

Given an algorithm for solving the range minima problem in time

T(n) and work W(n) we can obtain an algorithm that solves the

LCA-problem in time O(T(n)+ logn) and work O(n+W(n)).

Remark

In the sequential setting the LCA-problem and the range minima

problem are equivalent. This is not necessarily true in the

parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted

range minima problem where two successive elements in the

array just differ by +1 or −1.

PA 6 Tree Algorithms

© Harald Räcke 115/295

Observation

Given an algorithm for solving the range minima problem in time

T(n) and work W(n) we can obtain an algorithm that solves the

LCA-problem in time O(T(n)+ logn) and work O(n+W(n)).

Remark

In the sequential setting the LCA-problem and the range minima

problem are equivalent. This is not necessarily true in the

parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted

range minima problem where two successive elements in the

array just differ by +1 or −1.

PA 6 Tree Algorithms

© Harald Räcke 115/295

Prefix and Suffix Minima

Tree with prefix-minima and suffix-minima:

6 4 2 3 4 5 1 6 0 5 1 6 3 4 5 3

6 4 2 2 2 2 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 06 4 2 2 2 2 1 1

6 4 2 2 4 4 1 1 0 0 0 0 3 3 3 3

6 4 2 2 4 4 1 1 0 0 1 1 3 3 5 3

3333311000000000

3333311061111111

3222 6111 6110 3333

44 32 54 61 50 61 43 33

PA 6 Tree Algorithms

© Harald Räcke 116/295

ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.

PA 6 Tree Algorithms

© Harald Räcke 117/295

ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.

PA 6 Tree Algorithms

© Harald Räcke 117/295

ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.

PA 6 Tree Algorithms

© Harald Räcke 117/295

ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.

PA 6 Tree Algorithms

© Harald Räcke 117/295

ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.

PA 6 Tree Algorithms

© Harald Räcke 117/295

ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.

PA 6 Tree Algorithms

© Harald Räcke 117/295

Lemma 15

We can solve the range minima problem in time O(logn) and

work O(n logn).

PA 6 Tree Algorithms

© Harald Räcke 118/295

Reducing the Work

Partition A into blocks Bi of length logn

Preprocess each Bi block separately by a sequential algorithm so

that range-minima queries within the block can be answered in

constant time. (how?)

For each block Bi compute the minimum xi and its prefix and

suffix minima.

Use the previous algorithm on the array (x1, . . . , xn/ logn).

PA 6 Tree Algorithms

© Harald Räcke 119/295

Reducing the Work

Partition A into blocks Bi of length logn

Preprocess each Bi block separately by a sequential algorithm so

that range-minima queries within the block can be answered in

constant time. (how?)

For each block Bi compute the minimum xi and its prefix and

suffix minima.

Use the previous algorithm on the array (x1, . . . , xn/ logn).

PA 6 Tree Algorithms

© Harald Räcke 119/295

Reducing the Work

Partition A into blocks Bi of length logn

Preprocess each Bi block separately by a sequential algorithm so

that range-minima queries within the block can be answered in

constant time. (how?)

For each block Bi compute the minimum xi and its prefix and

suffix minima.

Use the previous algorithm on the array (x1, . . . , xn/ logn).

PA 6 Tree Algorithms

© Harald Räcke 119/295

Reducing the Work

Partition A into blocks Bi of length logn

Preprocess each Bi block separately by a sequential algorithm so

that range-minima queries within the block can be answered in

constant time. (how?)

For each block Bi compute the minimum xi and its prefix and

suffix minima.

Use the previous algorithm on the array (x1, . . . , xn/ logn).

PA 6 Tree Algorithms

© Harald Räcke 119/295

Answering a query (`, r):

ñ if ` and r are from the same block the data-structure for

this block gives us the result in constant time

ñ if ` and r are from different blocks the result is a minimum

of three elements:

• the suffix minmum of entry ` in `’s block

• the minimum among x`+1, . . . , xr−1

• the prefix minimum of entry r in r ’s block

PA 6 Tree Algorithms

© Harald Räcke 120/295

Answering a query (`, r):

ñ if ` and r are from the same block the data-structure for

this block gives us the result in constant time

ñ if ` and r are from different blocks the result is a minimum

of three elements:

• the suffix minmum of entry ` in `’s block

• the minimum among x`+1, . . . , xr−1

• the prefix minimum of entry r in r ’s block

PA 6 Tree Algorithms

© Harald Räcke 120/295

Searching

An extension of binary search with p processors gives that one

can find the rank of an element in

logp+1(n) =
logn

log(p + 1)

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model

searching cannot be done faster than O(logn− logp) with p
processors even if there are p copies of the search key.

PA 7 Searching and Sorting

© Harald Räcke 121/295

Searching

An extension of binary search with p processors gives that one

can find the rank of an element in

logp+1(n) =
logn

log(p + 1)

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model

searching cannot be done faster than O(logn− logp) with p
processors even if there are p copies of the search key.

PA 7 Searching and Sorting

© Harald Räcke 121/295

Searching

An extension of binary search with p processors gives that one

can find the rank of an element in

logp+1(n) =
logn

log(p + 1)

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model

searching cannot be done faster than O(logn− logp) with p
processors even if there are p copies of the search key.

PA 7 Searching and Sorting

© Harald Räcke 121/295

Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 16

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 7 Searching and Sorting

© Harald Räcke 122/295

Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 16

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 7 Searching and Sorting

© Harald Räcke 122/295

Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 16

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 7 Searching and Sorting

© Harald Räcke 122/295

Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 16

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 7 Searching and Sorting

© Harald Räcke 122/295

Merging

We have already seen a merging-algorithm that runs in time

O(logn) and work O(n).

Using the fast search algorithm we can improve this to a running

time of O(log logn) and work O(n log logn).

PA 7 Searching and Sorting

© Harald Räcke 123/295

Merging

We have already seen a merging-algorithm that runs in time

O(logn) and work O(n).

Using the fast search algorithm we can improve this to a running

time of O(log logn) and work O(n log logn).

PA 7 Searching and Sorting

© Harald Räcke 123/295

Merging

Input: A = a1, . . . , an; B = b1, . . . , bm; m ≤ n
1. if m < 4 then rank elements of B, using the parallel search

algorithm with p processors. Time: O(1). Work: O(n).
2. Concurrently rank elements b√m, b2

√
m, . . . , bm in A using

the parallel search algorithm with p = √n. Time: O(1).
Work: O(√m · √n) = O(n)
j(i) := rank(bi√m : A)

3. Let Bi = (bi√m+1, . . . , b(i+1)
√
m−1); and

Ai = (aj(i)+1, . . . , aj(i+1)).

Recursively compute rank(Bi : Ai).

4. Let k be index not a multiple of
√
m. i = d k√me. Then

rank(bk : A) = j(i)+ rank(bk : Ai).

PA 7 Searching and Sorting

© Harald Räcke 124/295

Merging

Input: A = a1, . . . , an; B = b1, . . . , bm; m ≤ n
1. if m < 4 then rank elements of B, using the parallel search

algorithm with p processors. Time: O(1). Work: O(n).
2. Concurrently rank elements b√m, b2

√
m, . . . , bm in A using

the parallel search algorithm with p = √n. Time: O(1).
Work: O(√m · √n) = O(n)
j(i) := rank(bi√m : A)

3. Let Bi = (bi√m+1, . . . , b(i+1)
√
m−1); and

Ai = (aj(i)+1, . . . , aj(i+1)).

Recursively compute rank(Bi : Ai).

4. Let k be index not a multiple of
√
m. i = d k√me. Then

rank(bk : A) = j(i)+ rank(bk : Ai).

PA 7 Searching and Sorting

© Harald Räcke 124/295

Merging

Input: A = a1, . . . , an; B = b1, . . . , bm; m ≤ n
1. if m < 4 then rank elements of B, using the parallel search

algorithm with p processors. Time: O(1). Work: O(n).
2. Concurrently rank elements b√m, b2

√
m, . . . , bm in A using

the parallel search algorithm with p = √n. Time: O(1).
Work: O(√m · √n) = O(n)
j(i) := rank(bi√m : A)

3. Let Bi = (bi√m+1, . . . , b(i+1)
√
m−1); and

Ai = (aj(i)+1, . . . , aj(i+1)).

Recursively compute rank(Bi : Ai).

4. Let k be index not a multiple of
√
m. i = d k√me. Then

rank(bk : A) = j(i)+ rank(bk : Ai).

PA 7 Searching and Sorting

© Harald Räcke 124/295

Merging

Input: A = a1, . . . , an; B = b1, . . . , bm; m ≤ n
1. if m < 4 then rank elements of B, using the parallel search

algorithm with p processors. Time: O(1). Work: O(n).
2. Concurrently rank elements b√m, b2

√
m, . . . , bm in A using

the parallel search algorithm with p = √n. Time: O(1).
Work: O(√m · √n) = O(n)
j(i) := rank(bi√m : A)

3. Let Bi = (bi√m+1, . . . , b(i+1)
√
m−1); and

Ai = (aj(i)+1, . . . , aj(i+1)).

Recursively compute rank(Bi : Ai).

4. Let k be index not a multiple of
√
m. i = d k√me. Then

rank(bk : A) = j(i)+ rank(bk : Ai).

PA 7 Searching and Sorting

© Harald Räcke 124/295

The algorithm can be made work-optimal by standard

techniques.

proof on board...

PA 7 Searching and Sorting

© Harald Räcke 125/295

Mergesort

Lemma 17

A straightforward parallelization of Mergesort can be

implemented in time O(logn log logn) and with work O(n logn).

This assumes the CREW-PRAM model.

PA 7 Searching and Sorting

© Harald Räcke 126/295

Mergesort

Lemma 17

A straightforward parallelization of Mergesort can be

implemented in time O(logn log logn) and with work O(n logn).

This assumes the CREW-PRAM model.

PA 7 Searching and Sorting

© Harald Räcke 126/295

Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the

leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary

tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary

tree can be performed in parallel we obtain time O(h log logn)
and work O(hn), where h = O(logn) is the height of the tree.

PA 7 Searching and Sorting

© Harald Räcke 127/295

Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the

leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary

tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary

tree can be performed in parallel we obtain time O(h log logn)
and work O(hn), where h = O(logn) is the height of the tree.

PA 7 Searching and Sorting

© Harald Räcke 127/295

Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the

leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary

tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary

tree can be performed in parallel we obtain time O(h log logn)
and work O(hn), where h = O(logn) is the height of the tree.

PA 7 Searching and Sorting

© Harald Räcke 127/295

Pipelined Mergesort

We again compute L[v] for every node in the complete binary

tree.

After round s, Ls[v] is an approximation of L[v] that will be

improved in future rounds.

For s ≥ 3 height(v), Ls[v] = L[v].

PA 7 Searching and Sorting

© Harald Räcke 128/295

Pipelined Mergesort

We again compute L[v] for every node in the complete binary

tree.

After round s, Ls[v] is an approximation of L[v] that will be

improved in future rounds.

For s ≥ 3 height(v), Ls[v] = L[v].

PA 7 Searching and Sorting

© Harald Räcke 128/295

Pipelined Mergesort

We again compute L[v] for every node in the complete binary

tree.

After round s, Ls[v] is an approximation of L[v] that will be

improved in future rounds.

For s ≥ 3 height(v), Ls[v] = L[v].

PA 7 Searching and Sorting

© Harald Räcke 128/295

Pipelined Mergesort

In every round, a node v sends sample(Ls[v]) (an

approximation of its current list) upwards, and receives

approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if s ≤ 3 height(v) (this means

its list is not yet complete at the start of the round, i.e.,

Ls−1[v] ≠ L[v]).

PA 7 Searching and Sorting

© Harald Räcke 129/295

Pipelined Mergesort

In every round, a node v sends sample(Ls[v]) (an

approximation of its current list) upwards, and receives

approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if s ≤ 3 height(v) (this means

its list is not yet complete at the start of the round, i.e.,

Ls−1[v] ≠ L[v]).

PA 7 Searching and Sorting

© Harald Räcke 129/295

Pipelined Mergesort

In every round, a node v sends sample(Ls[v]) (an

approximation of its current list) upwards, and receives

approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if s ≤ 3 height(v) (this means

its list is not yet complete at the start of the round, i.e.,

Ls−1[v] ≠ L[v]).

PA 7 Searching and Sorting

© Harald Räcke 129/295

Pipelined Mergesort

Algorithm 11 ColeSort()
1: initialize L0[v] = Av for leaf nodes; L0[v] = � otw.

2: for s ← 1 to 3 · height(T) do

3: for all active nodes v do

4: // u and w children of v
5: L′s[u]← sample(Ls−1[u])
6: L′s[w]← sample(Ls−1[w])
7: Ls[v]←merge(L′s[u], L′s[u])

sample(Ls[v]) =


sample4(Ls[v]) s ≤ 3 height(v)
sample2(Ls[v]) s = 3 height(v)+ 1

sample1(Ls[v]) s = 3 height(v)+ 2

PA 7 Searching and Sorting

© Harald Räcke 130/295

Pipelined Mergesort

Algorithm 11 ColeSort()
1: initialize L0[v] = Av for leaf nodes; L0[v] = � otw.

2: for s ← 1 to 3 · height(T) do

3: for all active nodes v do

4: // u and w children of v
5: L′s[u]← sample(Ls−1[u])
6: L′s[w]← sample(Ls−1[w])
7: Ls[v]←merge(L′s[u], L′s[u])

sample(Ls[v]) =


sample4(Ls[v]) s ≤ 3 height(v)
sample2(Ls[v]) s = 3 height(v)+ 1

sample1(Ls[v]) s = 3 height(v)+ 2

PA 7 Searching and Sorting

© Harald Räcke 130/295

Colesort

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 0

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 1

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 2

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0

0

5

5

2

2

7

7

8

8

0

0

4

4

9

9

3

3

9

9

0

0

6

6

7

7

9

9

4

4

0

0

3

3

7

7

5

5

5

5

5

5

3

3

1

1

4

4

3

3

5

5

5

5

1

1

2

2

1

1

5

5

7

7

s = 3

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 4

5 7 8 9 6 9 4 9 5 7 4 5 5 5 2 7

0 5

5

2 7

7

0 8

8

4 9

9

3 9

9

0 6

6

7 9

9

0 4

4

3 7

7

5 5

5

3 5

5

1 4

4

3 5

5

1 5

5

1 2

2

5 7

7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 5

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5

0 5

2 7

2 7

0 8

0 8

4 9

4 9

3 9

3 9

0 6

0 6

7 9

7 9

0 4

0 4

3 7

3 7

5 5

5 5

3 5

3 5

1 4

1 4

3 5

3 5

1 5

1 5

1 2

1 2

5 7

5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 6

7 9 9 9 5 7 5 7

0 2 5 7

7

0 4 8 9

9

0 3 6 9

9

0 4 7 9

9

3 5 5 7

7

1 3 4 5

5

1 3 5 5

5

1 2 5 7

7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 7

2 4 7 9 3 4 9 9 3 5 5 7 2 3 5 7

0 2 5 7

2 7

0 4 8 9

4 9

0 3 6 9

3 9

0 4 7 9

4 9

3 5 5 7

5 7

1 3 4 5

3 5

1 3 5 5

3 5

1 2 5 7

2 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 8

9 9 7 7

0 0 2 4 5 7 8 9

9

0 0 3 4 6 7 9 9

9

1 3 3 4 5 5 5 7

7

1 1 2 3 5 5 5 7

7

0 2 5 7

0 2 5 7

0 4 8 9

0 4 8 9

0 3 6 9

0 3 6 9

0 4 7 9

0 4 7 9

3 5 5 7

3 5 5 7

1 3 4 5

1 3 4 5

1 3 5 5

1 3 5 5

1 2 5 7

1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 9

4 4 9 9 3 4 7 7

0 0 2 4 5 7 8 9

4 9

0 0 3 4 6 7 9 9

4 9

1 3 3 4 5 5 5 7

4 7

1 1 2 3 5 5 5 7

3 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 10

7 9

0 0 4 4 7 7 9 9

9

1 3 3 4 5 5 7 7

7

0 0 2 4 5 7 8 9

0 4 7 9

0 0 3 4 6 7 9 9

0 4 7 9

1 3 3 4 5 5 5 7

3 4 5 7

1 1 2 3 5 5 5 7

1 3 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 11

4 4 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

4 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

4 7

0 0 2 4 5 7 8 9

0 0 2 4 5 7 8 9

0 0 3 4 6 7 9 9

0 0 3 4 6 7 9 9

1 3 3 4 5 5 5 7

1 3 3 4 5 5 5 7

1 1 2 3 5 5 5 7

1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 12

0 2 4 4 5 7 7 9

9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 4 7 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

2 4 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 13

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

4 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 3 4 6 7 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 2 3 4 5 5 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 14

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

2 4 6 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 15

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 2 3 4 5 6 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 16

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 17

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 0

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 1

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 2

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0

0

5

5

2

2

7

7

8

8

0

0

4

4

9

9

3

3

9

9

0

0

6

6

7

7

9

9

4

4

0

0

3

3

7

7

5

5

5

5

5

5

3

3

1

1

4

4

3

3

5

5

5

5

1

1

2

2

1

1

5

5

7

7

s = 3

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 4

5 7 8 9 6 9 4 9 5 7 4 5 5 5 2 7

0 5

5

2 7

7

0 8

8

4 9

9

3 9

9

0 6

6

7 9

9

0 4

4

3 7

7

5 5

5

3 5

5

1 4

4

3 5

5

1 5

5

1 2

2

5 7

7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 5

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5

0 5

2 7

2 7

0 8

0 8

4 9

4 9

3 9

3 9

0 6

0 6

7 9

7 9

0 4

0 4

3 7

3 7

5 5

5 5

3 5

3 5

1 4

1 4

3 5

3 5

1 5

1 5

1 2

1 2

5 7

5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 6

7 9 9 9 5 7 5 7

0 2 5 7

7

0 4 8 9

9

0 3 6 9

9

0 4 7 9

9

3 5 5 7

7

1 3 4 5

5

1 3 5 5

5

1 2 5 7

7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 7

2 4 7 9 3 4 9 9 3 5 5 7 2 3 5 7

0 2 5 7

2 7

0 4 8 9

4 9

0 3 6 9

3 9

0 4 7 9

4 9

3 5 5 7

5 7

1 3 4 5

3 5

1 3 5 5

3 5

1 2 5 7

2 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 8

9 9 7 7

0 0 2 4 5 7 8 9

9

0 0 3 4 6 7 9 9

9

1 3 3 4 5 5 5 7

7

1 1 2 3 5 5 5 7

7

0 2 5 7

0 2 5 7

0 4 8 9

0 4 8 9

0 3 6 9

0 3 6 9

0 4 7 9

0 4 7 9

3 5 5 7

3 5 5 7

1 3 4 5

1 3 4 5

1 3 5 5

1 3 5 5

1 2 5 7

1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 9

4 4 9 9 3 4 7 7

0 0 2 4 5 7 8 9

4 9

0 0 3 4 6 7 9 9

4 9

1 3 3 4 5 5 5 7

4 7

1 1 2 3 5 5 5 7

3 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 10

7 9

0 0 4 4 7 7 9 9

9

1 3 3 4 5 5 7 7

7

0 0 2 4 5 7 8 9

0 4 7 9

0 0 3 4 6 7 9 9

0 4 7 9

1 3 3 4 5 5 5 7

3 4 5 7

1 1 2 3 5 5 5 7

1 3 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 11

4 4 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

4 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

4 7

0 0 2 4 5 7 8 9

0 0 2 4 5 7 8 9

0 0 3 4 6 7 9 9

0 0 3 4 6 7 9 9

1 3 3 4 5 5 5 7

1 3 3 4 5 5 5 7

1 1 2 3 5 5 5 7

1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 12

0 2 4 4 5 7 7 9

9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 4 7 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

2 4 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 13

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

4 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 3 4 6 7 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 2 3 4 5 5 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 14

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

2 4 6 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 15

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 2 3 4 5 6 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 16

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 17

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 0

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 1

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 2

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0

0

5

5

2

2

7

7

8

8

0

0

4

4

9

9

3

3

9

9

0

0

6

6

7

7

9

9

4

4

0

0

3

3

7

7

5

5

5

5

5

5

3

3

1

1

4

4

3

3

5

5

5

5

1

1

2

2

1

1

5

5

7

7

s = 3

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 4

5 7 8 9 6 9 4 9 5 7 4 5 5 5 2 7

0 5

5

2 7

7

0 8

8

4 9

9

3 9

9

0 6

6

7 9

9

0 4

4

3 7

7

5 5

5

3 5

5

1 4

4

3 5

5

1 5

5

1 2

2

5 7

7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 5

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5

0 5

2 7

2 7

0 8

0 8

4 9

4 9

3 9

3 9

0 6

0 6

7 9

7 9

0 4

0 4

3 7

3 7

5 5

5 5

3 5

3 5

1 4

1 4

3 5

3 5

1 5

1 5

1 2

1 2

5 7

5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 6

7 9 9 9 5 7 5 7

0 2 5 7

7

0 4 8 9

9

0 3 6 9

9

0 4 7 9

9

3 5 5 7

7

1 3 4 5

5

1 3 5 5

5

1 2 5 7

7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 7

2 4 7 9 3 4 9 9 3 5 5 7 2 3 5 7

0 2 5 7

2 7

0 4 8 9

4 9

0 3 6 9

3 9

0 4 7 9

4 9

3 5 5 7

5 7

1 3 4 5

3 5

1 3 5 5

3 5

1 2 5 7

2 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 8

9 9 7 7

0 0 2 4 5 7 8 9

9

0 0 3 4 6 7 9 9

9

1 3 3 4 5 5 5 7

7

1 1 2 3 5 5 5 7

7

0 2 5 7

0 2 5 7

0 4 8 9

0 4 8 9

0 3 6 9

0 3 6 9

0 4 7 9

0 4 7 9

3 5 5 7

3 5 5 7

1 3 4 5

1 3 4 5

1 3 5 5

1 3 5 5

1 2 5 7

1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 9

4 4 9 9 3 4 7 7

0 0 2 4 5 7 8 9

4 9

0 0 3 4 6 7 9 9

4 9

1 3 3 4 5 5 5 7

4 7

1 1 2 3 5 5 5 7

3 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 10

7 9

0 0 4 4 7 7 9 9

9

1 3 3 4 5 5 7 7

7

0 0 2 4 5 7 8 9

0 4 7 9

0 0 3 4 6 7 9 9

0 4 7 9

1 3 3 4 5 5 5 7

3 4 5 7

1 1 2 3 5 5 5 7

1 3 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 11

4 4 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

4 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

4 7

0 0 2 4 5 7 8 9

0 0 2 4 5 7 8 9

0 0 3 4 6 7 9 9

0 0 3 4 6 7 9 9

1 3 3 4 5 5 5 7

1 3 3 4 5 5 5 7

1 1 2 3 5 5 5 7

1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 12

0 2 4 4 5 7 7 9

9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 4 7 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

2 4 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 13

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

4 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 3 4 6 7 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 2 3 4 5 5 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 14

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

2 4 6 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 15

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 2 3 4 5 6 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 16

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 17

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 0

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 1

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 2

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0

0

5

5

2

2

7

7

8

8

0

0

4

4

9

9

3

3

9

9

0

0

6

6

7

7

9

9

4

4

0

0

3

3

7

7

5

5

5

5

5

5

3

3

1

1

4

4

3

3

5

5

5

5

1

1

2

2

1

1

5

5

7

7

s = 3

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 4

5 7 8 9 6 9 4 9 5 7 4 5 5 5 2 7

0 5

5

2 7

7

0 8

8

4 9

9

3 9

9

0 6

6

7 9

9

0 4

4

3 7

7

5 5

5

3 5

5

1 4

4

3 5

5

1 5

5

1 2

2

5 7

7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 5

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5

0 5

2 7

2 7

0 8

0 8

4 9

4 9

3 9

3 9

0 6

0 6

7 9

7 9

0 4

0 4

3 7

3 7

5 5

5 5

3 5

3 5

1 4

1 4

3 5

3 5

1 5

1 5

1 2

1 2

5 7

5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 6

7 9 9 9 5 7 5 7

0 2 5 7

7

0 4 8 9

9

0 3 6 9

9

0 4 7 9

9

3 5 5 7

7

1 3 4 5

5

1 3 5 5

5

1 2 5 7

7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 7

2 4 7 9 3 4 9 9 3 5 5 7 2 3 5 7

0 2 5 7

2 7

0 4 8 9

4 9

0 3 6 9

3 9

0 4 7 9

4 9

3 5 5 7

5 7

1 3 4 5

3 5

1 3 5 5

3 5

1 2 5 7

2 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 8

9 9 7 7

0 0 2 4 5 7 8 9

9

0 0 3 4 6 7 9 9

9

1 3 3 4 5 5 5 7

7

1 1 2 3 5 5 5 7

7

0 2 5 7

0 2 5 7

0 4 8 9

0 4 8 9

0 3 6 9

0 3 6 9

0 4 7 9

0 4 7 9

3 5 5 7

3 5 5 7

1 3 4 5

1 3 4 5

1 3 5 5

1 3 5 5

1 2 5 7

1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 9

4 4 9 9 3 4 7 7

0 0 2 4 5 7 8 9

4 9

0 0 3 4 6 7 9 9

4 9

1 3 3 4 5 5 5 7

4 7

1 1 2 3 5 5 5 7

3 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 10

7 9

0 0 4 4 7 7 9 9

9

1 3 3 4 5 5 7 7

7

0 0 2 4 5 7 8 9

0 4 7 9

0 0 3 4 6 7 9 9

0 4 7 9

1 3 3 4 5 5 5 7

3 4 5 7

1 1 2 3 5 5 5 7

1 3 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 11

4 4 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

4 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

4 7

0 0 2 4 5 7 8 9

0 0 2 4 5 7 8 9

0 0 3 4 6 7 9 9

0 0 3 4 6 7 9 9

1 3 3 4 5 5 5 7

1 3 3 4 5 5 5 7

1 1 2 3 5 5 5 7

1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 12

0 2 4 4 5 7 7 9

9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 4 7 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

2 4 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 13

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

4 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 3 4 6 7 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 2 3 4 5 5 5 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 14

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

2 4 6 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 15

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 2 3 4 5 6 7 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 16

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 1 2 3 3 4 4 5 5 5 6 7 7 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 17

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 8 9 9 9

0 0 0 0 2 3 4 4 5 6 7 7 8 9 9 9 1 1 1 2 3 3 3 4 5 5 5 5 5 5 7 7

0 0 2 4 5 7 8 9 0 0 3 4 6 7 9 9 1 3 3 4 5 5 5 7 1 1 2 3 5 5 5 7

0 2 5 7 0 4 8 9 0 3 6 9 0 4 7 9 3 5 5 7 1 3 4 5 1 3 5 5 1 2 5 7

0 5 2 7 0 8 4 9 3 9 0 6 7 9 0 4 3 7 5 5 3 5 1 4 3 5 1 5 1 2 5 7

0 5 2 7 8 0 4 9 3 9 0 6 7 9 4 0 3 7 5 5 5 3 1 4 3 5 5 1 2 1 5 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 0

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 1

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 2

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3

3

0

0

9

9

5

5

7

7

0

0

7

7

8

8

8

8

4

4

8

8

3

3

9

9

6

6

3

3

8

8

4

4

2

2

4

4

5

5

9

9

1

1

6

6

7

7

9

9

8

8

5

5

7

7

5

5

2

2

2

2

7

7

s = 3

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 4

3 9 7 8 8 8 8 9 4 5 7 9 7 9 5 7

0 3

3

5 9

9

0 7

7

7 8

8

4 8

8

3 8

8

6 9

9

3 8

8

2 4

4

4 5

5

1 9

9

6 7

7

8 9

9

5 7

7

2 5

5

2 7

7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 5

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3

0 3

5 9

5 9

0 7

0 7

7 8

7 8

4 8

4 8

3 8

3 8

6 9

6 9

3 8

3 8

2 4

2 4

4 5

4 5

1 9

1 9

6 7

6 7

8 9

8 9

5 7

5 7

2 5

2 5

2 7

2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 6

8 9 8 9 5 9 7 9

0 3 5 9

9

0 7 7 8

8

3 4 8 8

8

3 6 8 9

9

2 4 4 5

5

1 6 7 9

9

5 7 8 9

9

2 2 5 7

7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 7

3 7 8 9 4 6 8 9 4 5 6 9 2 7 7 9

0 3 5 9

3 9

0 7 7 8

7 8

3 4 8 8

4 8

3 6 8 9

6 9

2 4 4 5

4 5

1 6 7 9

6 9

5 7 8 9

7 9

2 2 5 7

2 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 8

9 9 9 9

0 0 3 5 7 7 8 9

9

3 3 4 6 8 8 8 9

9

1 2 4 4 5 6 7 9

9

2 2 5 5 7 7 8 9

9

0 3 5 9

0 3 5 9

0 7 7 8

0 7 7 8

3 4 8 8

3 4 8 8

3 6 8 9

3 6 8 9

2 4 4 5

2 4 4 5

1 6 7 9

1 6 7 9

5 7 8 9

5 7 8 9

2 2 5 7

2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 9

5 6 9 9 4 5 9 9

0 0 3 5 7 7 8 9

5 9

3 3 4 6 8 8 8 9

6 9

1 2 4 4 5 6 7 9

4 9

2 2 5 5 7 7 8 9

5 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 10

9 9

0 3 5 6 7 8 9 9

9

2 2 4 5 6 7 9 9

9

0 0 3 5 7 7 8 9

0 5 7 9

3 3 4 6 8 8 8 9

3 6 8 9

1 2 4 4 5 6 7 9

2 4 6 9

2 2 5 5 7 7 8 9

2 5 7 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 11

5 6 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

6 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

5 9

0 0 3 5 7 7 8 9

0 0 3 5 7 7 8 9

3 3 4 6 8 8 8 9

3 3 4 6 8 8 8 9

1 2 4 4 5 6 7 9

1 2 4 4 5 6 7 9

2 2 5 5 7 7 8 9

2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 12

2 3 5 6 7 8 9 9

9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

3 6 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 5 7 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 13

0 2 2 3 4 4 5 6 6 7 7 8 8 8 9 9

6 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 3 4 6 7 8 8 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

2 2 4 5 6 7 8 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 14

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

3 6 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 15

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

2 3 4 5 7 8 8 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 16

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 2 2 3 4 4 5 5 6 7 7 8 8 8 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 17

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9

0 0 3 3 3 4 5 6 7 7 8 8 8 8 9 9 1 2 2 2 4 4 5 5 5 6 7 7 7 8 9 9

0 0 3 5 7 7 8 9 3 3 4 6 8 8 8 9 1 2 4 4 5 6 7 9 2 2 5 5 7 7 8 9

0 3 5 9 0 7 7 8 3 4 8 8 3 6 8 9 2 4 4 5 1 6 7 9 5 7 8 9 2 2 5 7

0 3 5 9 0 7 7 8 4 8 3 8 6 9 3 8 2 4 4 5 1 9 6 7 8 9 5 7 2 5 2 7

3 0 9 5 7 0 7 8 8 4 8 3 9 6 3 8 4 2 4 5 9 1 6 7 9 8 5 7 5 2 2 7

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 0

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 1

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 2

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6

6

2

2

3

3

0

0

6

6

3

3

7

7

4

4

6

6

6

6

9

9

3

3

4

4

3

3

5

5

3

3

5

5

7

7

3

3

2

2

3

3

9

9

1

1

0

0

5

5

8

8

2

2

6

6

1

1

3

3

2

2

4

4

s = 3

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 4

3 6 6 7 6 9 4 5 3 7 1 9 6 8 3 4

2 6

6

0 3

3

3 6

6

4 7

7

6 6

6

3 9

9

3 4

4

3 5

5

5 7

7

2 3

3

3 9

9

0 1

1

5 8

8

2 6

6

1 3

3

2 4

4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 5

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6

2 6

0 3

0 3

3 6

3 6

4 7

4 7

6 6

6 6

3 9

3 9

3 4

3 4

3 5

3 5

5 7

5 7

2 3

2 3

3 9

3 9

0 1

0 1

5 8

5 8

2 6

2 6

1 3

1 3

2 4

2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 6

6 7 5 9 7 9 4 8

0 2 3 6

6

3 4 6 7

7

3 6 6 9

9

3 3 4 5

5

2 3 5 7

7

0 1 3 9

9

2 5 6 8

8

1 2 3 4

4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 7

2 4 6 7 3 5 6 9 1 3 7 9 2 4 5 8

0 2 3 6

2 6

3 4 6 7

4 7

3 6 6 9

6 9

3 3 4 5

3 5

2 3 5 7

3 7

0 1 3 9

1 9

2 5 6 8

5 8

1 2 3 4

2 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 8

7 9 8 9

0 2 3 3 4 6 6 7

7

3 3 3 4 5 6 6 9

9

0 1 2 3 3 5 7 9

9

1 2 2 3 4 5 6 8

8

0 2 3 6

0 2 3 6

3 4 6 7

3 4 6 7

3 6 6 9

3 6 6 9

3 3 4 5

3 3 4 5

2 3 5 7

2 3 5 7

0 1 3 9

0 1 3 9

2 5 6 8

2 5 6 8

1 2 3 4

1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 9

3 4 7 9 3 3 8 9

0 2 3 3 4 6 6 7

3 7

3 3 3 4 5 6 6 9

4 9

0 1 2 3 3 5 7 9

3 9

1 2 2 3 4 5 6 8

3 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 10

9 9

2 3 3 4 6 6 7 9

9

1 2 3 3 5 5 8 9

9

0 2 3 3 4 6 6 7

2 3 6 7

3 3 3 4 5 6 6 9

3 4 6 9

0 1 2 3 3 5 7 9

1 3 5 9

1 2 2 3 4 5 6 8

2 3 5 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 11

3 4 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

4 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

3 9

0 2 3 3 4 6 6 7

0 2 3 3 4 6 6 7

3 3 3 4 5 6 6 9

3 3 3 4 5 6 6 9

0 1 2 3 3 5 7 9

0 1 2 3 3 5 7 9

1 2 2 3 4 5 6 8

1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 12

2 3 3 4 5 6 9 9

9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

3 4 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

2 3 5 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 13

1 2 2 2 3 3 3 4 4 5 5 6 6 7 9 9

4 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

2 3 3 4 5 6 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

1 2 2 3 4 5 7 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 14

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

2 4 6 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 15

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

1 2 3 3 5 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 16

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 1 2 2 3 3 3 3 4 5 5 6 6 7 8 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 17

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 0

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 1

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 2

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6

6

2

2

3

3

0

0

6

6

3

3

7

7

4

4

6

6

6

6

9

9

3

3

4

4

3

3

5

5

3

3

5

5

7

7

3

3

2

2

3

3

9

9

1

1

0

0

5

5

8

8

2

2

6

6

1

1

3

3

2

2

4

4

s = 3

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 4

3 6 6 7 6 9 4 5 3 7 1 9 6 8 3 4

2 6

6

0 3

3

3 6

6

4 7

7

6 6

6

3 9

9

3 4

4

3 5

5

5 7

7

2 3

3

3 9

9

0 1

1

5 8

8

2 6

6

1 3

3

2 4

4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 5

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6

2 6

0 3

0 3

3 6

3 6

4 7

4 7

6 6

6 6

3 9

3 9

3 4

3 4

3 5

3 5

5 7

5 7

2 3

2 3

3 9

3 9

0 1

0 1

5 8

5 8

2 6

2 6

1 3

1 3

2 4

2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 6

6 7 5 9 7 9 4 8

0 2 3 6

6

3 4 6 7

7

3 6 6 9

9

3 3 4 5

5

2 3 5 7

7

0 1 3 9

9

2 5 6 8

8

1 2 3 4

4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 7

2 4 6 7 3 5 6 9 1 3 7 9 2 4 5 8

0 2 3 6

2 6

3 4 6 7

4 7

3 6 6 9

6 9

3 3 4 5

3 5

2 3 5 7

3 7

0 1 3 9

1 9

2 5 6 8

5 8

1 2 3 4

2 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 8

7 9 8 9

0 2 3 3 4 6 6 7

7

3 3 3 4 5 6 6 9

9

0 1 2 3 3 5 7 9

9

1 2 2 3 4 5 6 8

8

0 2 3 6

0 2 3 6

3 4 6 7

3 4 6 7

3 6 6 9

3 6 6 9

3 3 4 5

3 3 4 5

2 3 5 7

2 3 5 7

0 1 3 9

0 1 3 9

2 5 6 8

2 5 6 8

1 2 3 4

1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 9

3 4 7 9 3 3 8 9

0 2 3 3 4 6 6 7

3 7

3 3 3 4 5 6 6 9

4 9

0 1 2 3 3 5 7 9

3 9

1 2 2 3 4 5 6 8

3 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 10

9 9

2 3 3 4 6 6 7 9

9

1 2 3 3 5 5 8 9

9

0 2 3 3 4 6 6 7

2 3 6 7

3 3 3 4 5 6 6 9

3 4 6 9

0 1 2 3 3 5 7 9

1 3 5 9

1 2 2 3 4 5 6 8

2 3 5 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 11

3 4 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

4 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

3 9

0 2 3 3 4 6 6 7

0 2 3 3 4 6 6 7

3 3 3 4 5 6 6 9

3 3 3 4 5 6 6 9

0 1 2 3 3 5 7 9

0 1 2 3 3 5 7 9

1 2 2 3 4 5 6 8

1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 12

2 3 3 4 5 6 9 9

9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

3 4 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

2 3 5 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 13

1 2 2 2 3 3 3 4 4 5 5 6 6 7 9 9

4 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

2 3 3 4 5 6 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

1 2 2 3 4 5 7 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 14

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

2 4 6 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 15

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

1 2 3 3 5 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 16

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 1 2 2 3 3 3 3 4 5 5 6 6 7 8 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 17

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 0

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 1

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 2

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6

6

2

2

3

3

0

0

6

6

3

3

7

7

4

4

6

6

6

6

9

9

3

3

4

4

3

3

5

5

3

3

5

5

7

7

3

3

2

2

3

3

9

9

1

1

0

0

5

5

8

8

2

2

6

6

1

1

3

3

2

2

4

4

s = 3

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 4

3 6 6 7 6 9 4 5 3 7 1 9 6 8 3 4

2 6

6

0 3

3

3 6

6

4 7

7

6 6

6

3 9

9

3 4

4

3 5

5

5 7

7

2 3

3

3 9

9

0 1

1

5 8

8

2 6

6

1 3

3

2 4

4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 5

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6

2 6

0 3

0 3

3 6

3 6

4 7

4 7

6 6

6 6

3 9

3 9

3 4

3 4

3 5

3 5

5 7

5 7

2 3

2 3

3 9

3 9

0 1

0 1

5 8

5 8

2 6

2 6

1 3

1 3

2 4

2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 6

6 7 5 9 7 9 4 8

0 2 3 6

6

3 4 6 7

7

3 6 6 9

9

3 3 4 5

5

2 3 5 7

7

0 1 3 9

9

2 5 6 8

8

1 2 3 4

4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 7

2 4 6 7 3 5 6 9 1 3 7 9 2 4 5 8

0 2 3 6

2 6

3 4 6 7

4 7

3 6 6 9

6 9

3 3 4 5

3 5

2 3 5 7

3 7

0 1 3 9

1 9

2 5 6 8

5 8

1 2 3 4

2 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 8

7 9 8 9

0 2 3 3 4 6 6 7

7

3 3 3 4 5 6 6 9

9

0 1 2 3 3 5 7 9

9

1 2 2 3 4 5 6 8

8

0 2 3 6

0 2 3 6

3 4 6 7

3 4 6 7

3 6 6 9

3 6 6 9

3 3 4 5

3 3 4 5

2 3 5 7

2 3 5 7

0 1 3 9

0 1 3 9

2 5 6 8

2 5 6 8

1 2 3 4

1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 9

3 4 7 9 3 3 8 9

0 2 3 3 4 6 6 7

3 7

3 3 3 4 5 6 6 9

4 9

0 1 2 3 3 5 7 9

3 9

1 2 2 3 4 5 6 8

3 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 10

9 9

2 3 3 4 6 6 7 9

9

1 2 3 3 5 5 8 9

9

0 2 3 3 4 6 6 7

2 3 6 7

3 3 3 4 5 6 6 9

3 4 6 9

0 1 2 3 3 5 7 9

1 3 5 9

1 2 2 3 4 5 6 8

2 3 5 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 11

3 4 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

4 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

3 9

0 2 3 3 4 6 6 7

0 2 3 3 4 6 6 7

3 3 3 4 5 6 6 9

3 3 3 4 5 6 6 9

0 1 2 3 3 5 7 9

0 1 2 3 3 5 7 9

1 2 2 3 4 5 6 8

1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 12

2 3 3 4 5 6 9 9

9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

3 4 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

2 3 5 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 13

1 2 2 2 3 3 3 4 4 5 5 6 6 7 9 9

4 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

2 3 3 4 5 6 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

1 2 2 3 4 5 7 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 14

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

2 4 6 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 15

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

1 2 3 3 5 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 16

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 1 2 2 3 3 3 3 4 5 5 6 6 7 8 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 17

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 0

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 1

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 2

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6

6

2

2

3

3

0

0

6

6

3

3

7

7

4

4

6

6

6

6

9

9

3

3

4

4

3

3

5

5

3

3

5

5

7

7

3

3

2

2

3

3

9

9

1

1

0

0

5

5

8

8

2

2

6

6

1

1

3

3

2

2

4

4

s = 3

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 4

3 6 6 7 6 9 4 5 3 7 1 9 6 8 3 4

2 6

6

0 3

3

3 6

6

4 7

7

6 6

6

3 9

9

3 4

4

3 5

5

5 7

7

2 3

3

3 9

9

0 1

1

5 8

8

2 6

6

1 3

3

2 4

4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 5

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6

2 6

0 3

0 3

3 6

3 6

4 7

4 7

6 6

6 6

3 9

3 9

3 4

3 4

3 5

3 5

5 7

5 7

2 3

2 3

3 9

3 9

0 1

0 1

5 8

5 8

2 6

2 6

1 3

1 3

2 4

2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 6

6 7 5 9 7 9 4 8

0 2 3 6

6

3 4 6 7

7

3 6 6 9

9

3 3 4 5

5

2 3 5 7

7

0 1 3 9

9

2 5 6 8

8

1 2 3 4

4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 7

2 4 6 7 3 5 6 9 1 3 7 9 2 4 5 8

0 2 3 6

2 6

3 4 6 7

4 7

3 6 6 9

6 9

3 3 4 5

3 5

2 3 5 7

3 7

0 1 3 9

1 9

2 5 6 8

5 8

1 2 3 4

2 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 8

7 9 8 9

0 2 3 3 4 6 6 7

7

3 3 3 4 5 6 6 9

9

0 1 2 3 3 5 7 9

9

1 2 2 3 4 5 6 8

8

0 2 3 6

0 2 3 6

3 4 6 7

3 4 6 7

3 6 6 9

3 6 6 9

3 3 4 5

3 3 4 5

2 3 5 7

2 3 5 7

0 1 3 9

0 1 3 9

2 5 6 8

2 5 6 8

1 2 3 4

1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 9

3 4 7 9 3 3 8 9

0 2 3 3 4 6 6 7

3 7

3 3 3 4 5 6 6 9

4 9

0 1 2 3 3 5 7 9

3 9

1 2 2 3 4 5 6 8

3 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 10

9 9

2 3 3 4 6 6 7 9

9

1 2 3 3 5 5 8 9

9

0 2 3 3 4 6 6 7

2 3 6 7

3 3 3 4 5 6 6 9

3 4 6 9

0 1 2 3 3 5 7 9

1 3 5 9

1 2 2 3 4 5 6 8

2 3 5 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 11

3 4 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

4 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

3 9

0 2 3 3 4 6 6 7

0 2 3 3 4 6 6 7

3 3 3 4 5 6 6 9

3 3 3 4 5 6 6 9

0 1 2 3 3 5 7 9

0 1 2 3 3 5 7 9

1 2 2 3 4 5 6 8

1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 12

2 3 3 4 5 6 9 9

9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

3 4 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

2 3 5 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 13

1 2 2 2 3 3 3 4 4 5 5 6 6 7 9 9

4 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

2 3 3 4 5 6 6 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

1 2 2 3 4 5 7 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 14

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

2 4 6 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 15

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

1 2 3 3 5 6 7 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 16

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 1 2 2 3 3 3 3 4 5 5 6 6 7 8 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 17

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 7 7 8 9 9

0 2 3 3 3 3 3 4 4 5 6 6 6 6 7 9 0 1 1 2 2 2 3 3 3 4 5 5 6 7 8 9

0 2 3 3 4 6 6 7 3 3 3 4 5 6 6 9 0 1 2 3 3 5 7 9 1 2 2 3 4 5 6 8

0 2 3 6 3 4 6 7 3 6 6 9 3 3 4 5 2 3 5 7 0 1 3 9 2 5 6 8 1 2 3 4

2 6 0 3 3 6 4 7 6 6 3 9 3 4 3 5 5 7 2 3 3 9 0 1 5 8 2 6 1 3 2 4

6 2 3 0 6 3 7 4 6 6 9 3 4 3 5 3 5 7 3 2 3 9 1 0 5 8 2 6 1 3 2 4

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 0

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 1

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 2

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9

9

7

7

0

0

8

8

5

5

6

6

7

7

0

0

1

1

1

1

7

7

0

0

6

6

7

7

4

4

8

8

6

6

2

2

2

2

9

9

7

7

4

4

6

6

3

3

4

4

8

8

2

2

5

5

7

7

7

7

2

2

4

4

s = 3

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 4

8 9 6 7 1 7 7 8 6 9 6 7 5 8 4 7

7 9

9

0 8

8

5 6

6

0 7

7

1 1

1

0 7

7

6 7

7

4 8

8

2 6

6

2 9

9

4 7

7

3 6

6

4 8

8

2 5

5

7 7

7

2 4

4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 5

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9

7 9

0 8

0 8

5 6

5 6

0 7

0 7

1 1

1 1

0 7

0 7

6 7

6 7

4 8

4 8

2 6

2 6

2 9

2 9

4 7

4 7

3 6

3 6

4 8

4 8

2 5

2 5

7 7

7 7

2 4

2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 6

7 9 7 8 7 9 7 8

0 7 8 9

9

0 5 6 7

7

0 1 1 7

7

4 6 7 8

8

2 2 6 9

9

3 4 6 7

7

2 4 5 8

8

2 4 7 7

7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 7

5 7 7 9 1 6 7 8 2 4 7 9 4 4 7 8

0 7 8 9

7 9

0 5 6 7

5 7

0 1 1 7

1 7

4 6 7 8

6 8

2 2 6 9

2 9

3 4 6 7

4 7

2 4 5 8

4 8

2 4 7 7

4 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 8

8 9 8 9

0 0 5 6 7 7 8 9

9

0 1 1 4 6 7 7 8

8

2 2 3 4 6 6 7 9

9

2 2 4 4 5 7 7 8

8

0 7 8 9

0 7 8 9

0 5 6 7

0 5 6 7

0 1 1 7

0 1 1 7

4 6 7 8

4 6 7 8

2 2 6 9

2 2 6 9

3 4 6 7

3 4 6 7

2 4 5 8

2 4 5 8

2 4 7 7

2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 9

4 6 8 9 4 4 8 9

0 0 5 6 7 7 8 9

6 9

0 1 1 4 6 7 7 8

4 8

2 2 3 4 6 6 7 9

4 9

2 2 4 4 5 7 7 8

4 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 10

9 9

0 1 4 6 7 7 8 9

9

2 2 4 4 6 7 8 9

9

0 0 5 6 7 7 8 9

0 6 7 9

0 1 1 4 6 7 7 8

1 4 7 8

2 2 3 4 6 6 7 9

2 4 6 9

2 2 4 4 5 7 7 8

2 4 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 11

4 6 9 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

6 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

4 9

0 0 5 6 7 7 8 9

0 0 5 6 7 7 8 9

0 1 1 4 6 7 7 8

0 1 1 4 6 7 7 8

2 2 3 4 6 6 7 9

2 2 3 4 6 6 7 9

2 2 4 4 5 7 7 8

2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 12

1 2 4 6 7 7 9 9

9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

1 6 7 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

2 4 7 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 13

0 1 2 2 4 4 4 6 6 7 7 7 7 8 9 9

6 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

0 1 4 6 7 7 8 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

2 2 4 4 6 7 7 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 14

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

2 6 7 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 15

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

1 2 4 5 6 7 8 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9 2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 16

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

0 1 2 2 3 4 4 5 6 6 7 7 7 8 8 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9 2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 17

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9 2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Colesort

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 0

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 1

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 2

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9

9

7

7

0

0

8

8

5

5

6

6

7

7

0

0

1

1

1

1

7

7

0

0

6

6

7

7

4

4

8

8

6

6

2

2

2

2

9

9

7

7

4

4

6

6

3

3

4

4

8

8

2

2

5

5

7

7

7

7

2

2

4

4

s = 3

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 4

8 9 6 7 1 7 7 8 6 9 6 7 5 8 4 7

7 9

9

0 8

8

5 6

6

0 7

7

1 1

1

0 7

7

6 7

7

4 8

8

2 6

6

2 9

9

4 7

7

3 6

6

4 8

8

2 5

5

7 7

7

2 4

4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 5

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9

7 9

0 8

0 8

5 6

5 6

0 7

0 7

1 1

1 1

0 7

0 7

6 7

6 7

4 8

4 8

2 6

2 6

2 9

2 9

4 7

4 7

3 6

3 6

4 8

4 8

2 5

2 5

7 7

7 7

2 4

2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 6

7 9 7 8 7 9 7 8

0 7 8 9

9

0 5 6 7

7

0 1 1 7

7

4 6 7 8

8

2 2 6 9

9

3 4 6 7

7

2 4 5 8

8

2 4 7 7

7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 7

5 7 7 9 1 6 7 8 2 4 7 9 4 4 7 8

0 7 8 9

7 9

0 5 6 7

5 7

0 1 1 7

1 7

4 6 7 8

6 8

2 2 6 9

2 9

3 4 6 7

4 7

2 4 5 8

4 8

2 4 7 7

4 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 8

8 9 8 9

0 0 5 6 7 7 8 9

9

0 1 1 4 6 7 7 8

8

2 2 3 4 6 6 7 9

9

2 2 4 4 5 7 7 8

8

0 7 8 9

0 7 8 9

0 5 6 7

0 5 6 7

0 1 1 7

0 1 1 7

4 6 7 8

4 6 7 8

2 2 6 9

2 2 6 9

3 4 6 7

3 4 6 7

2 4 5 8

2 4 5 8

2 4 7 7

2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 9

4 6 8 9 4 4 8 9

0 0 5 6 7 7 8 9

6 9

0 1 1 4 6 7 7 8

4 8

2 2 3 4 6 6 7 9

4 9

2 2 4 4 5 7 7 8

4 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 10

9 9

0 1 4 6 7 7 8 9

9

2 2 4 4 6 7 8 9

9

0 0 5 6 7 7 8 9

0 6 7 9

0 1 1 4 6 7 7 8

1 4 7 8

2 2 3 4 6 6 7 9

2 4 6 9

2 2 4 4 5 7 7 8

2 4 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 11

4 6 9 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

6 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

4 9

0 0 5 6 7 7 8 9

0 0 5 6 7 7 8 9

0 1 1 4 6 7 7 8

0 1 1 4 6 7 7 8

2 2 3 4 6 6 7 9

2 2 3 4 6 6 7 9

2 2 4 4 5 7 7 8

2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 12

1 2 4 6 7 7 9 9

9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

1 6 7 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

2 4 7 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 13

0 1 2 2 4 4 4 6 6 7 7 7 7 8 9 9

6 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

0 1 4 6 7 7 8 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

2 2 4 4 6 7 7 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 14

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

2 6 7 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 15

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

1 2 4 5 6 7 8 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9 2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 16

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

0 1 2 2 3 4 4 5 6 6 7 7 7 8 8 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9 2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 17

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

0 0 0 1 1 2 2 2 2 3 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 8 8 8 9 9

0 0 0 1 1 4 5 6 6 7 7 7 7 8 8 9 2 2 2 2 3 4 4 4 5 6 6 7 7 7 8 9

0 0 5 6 7 7 8 9 0 1 1 4 6 7 7 8 2 2 3 4 6 6 7 9 2 2 4 4 5 7 7 8

0 7 8 9 0 5 6 7 0 1 1 7 4 6 7 8 2 2 6 9 3 4 6 7 2 4 5 8 2 4 7 7

7 9 0 8 5 6 0 7 1 1 0 7 6 7 4 8 2 6 2 9 4 7 3 6 4 8 2 5 7 7 2 4

9 7 0 8 5 6 7 0 1 1 7 0 6 7 4 8 6 2 2 9 7 4 6 3 4 8 2 5 7 7 2 4

s = 18

PA 7 Searching and Sorting

© Harald Räcke 131/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 18

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete

PA 7 Searching and Sorting

© Harald Räcke 132/295

Pipelined Mergesort

Lemma 19

The number of elements in lists Ls[v] for active nodes v is at

most O(n).

proof on board...

PA 7 Searching and Sorting

© Harald Räcke 133/295

Definition 20

A sequence X is a c-cover of a sequence Y if for any two

consecutive elements α,β from (−∞, X,∞) the set

|{yi | α ≤ yi ≤ β}| ≤ c.

PA 7 Searching and Sorting

© Harald Räcke 134/295

Pipelined Mergesort

Lemma 21

L′s[v] is a 4-cover of L′s+1[v].

If [a, b] with a,b ∈ L′s[v]∪ {−∞,∞} fulfills

|[a, b]∩ (L′s[v]∪ {−∞,∞})| = k we say [a, b] intersects

(−∞, L′s[v],+∞) in k items.

Lemma 22

If [a, b] intersects (−∞, L′s[v],∞) in k ≥ 2 items, then [a, b]
intersects (−∞, L′s+1,∞) in at most 2k items.

PA 7 Searching and Sorting

© Harald Räcke 135/295

Pipelined Mergesort

Lemma 21

L′s[v] is a 4-cover of L′s+1[v].

If [a, b] with a,b ∈ L′s[v]∪ {−∞,∞} fulfills

|[a, b]∩ (L′s[v]∪ {−∞,∞})| = k we say [a, b] intersects

(−∞, L′s[v],+∞) in k items.

Lemma 22

If [a, b] intersects (−∞, L′s[v],∞) in k ≥ 2 items, then [a, b]
intersects (−∞, L′s+1,∞) in at most 2k items.

PA 7 Searching and Sorting

© Harald Räcke 135/295

Pipelined Mergesort

Lemma 21

L′s[v] is a 4-cover of L′s+1[v].

If [a, b] with a,b ∈ L′s[v]∪ {−∞,∞} fulfills

|[a, b]∩ (L′s[v]∪ {−∞,∞})| = k we say [a, b] intersects

(−∞, L′s[v],+∞) in k items.

Lemma 22

If [a, b] intersects (−∞, L′s[v],∞) in k ≥ 2 items, then [a, b]
intersects (−∞, L′s+1,∞) in at most 2k items.

PA 7 Searching and Sorting

© Harald Räcke 135/295

L′s[v]

L′s[v]

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

Ls[v] ≤ 2p + 2q < 4k

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

Ls[v] ≤ 2p + 2q < 4k

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

Ls[v] ≤ 2p + 2q < 4k

L′s+1[v] < k

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

Ls[v] ≤ 2p + 2q < 4k

L′s+1[v] < k

L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

Ls[v] ≤ 2p + 2q < 4k

L′s+1[v] < k

Merging with a Cover

Lemma 23

Given two sorted sequences A and B. Let X be a c-cover of A and

B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X|) operations.

PA 7 Searching and Sorting

© Harald Räcke 137/295

Merging with a Cover

Lemma 24

Given two sorted sequences A and B. Let X be a c-cover of A for

constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X| + |B|)
operations; this means we can compute rank(A : B) and

rank(B : A).

PA 7 Searching and Sorting

© Harald Räcke 138/295

In order to do the merge in iteration s + 1 in constant time we

need to know

rank(Ls[v] : L′s+1[u]) and rank(Ls[v] : L′s+1[v])

and we need to know that Ls[v] is a 4-cover of L′s+1[u] and

L′s+1[v].

PA 7 Searching and Sorting

© Harald Räcke 139/295

Lemma 25

Ls[v] is a 4-cover of L′s+1[u] and L′s+1[v].

ñ Ls[v] ⊇ L′s[u], L′s[u]
ñ L′s[u] is 4-cover of L′s+1[u]
ñ Hence, Ls[v] is 4-cover of L′s+1[u] as adding more elements

cannot destroy the cover-property.

PA 7 Searching and Sorting

© Harald Räcke 140/295

Lemma 25

Ls[v] is a 4-cover of L′s+1[u] and L′s+1[v].

ñ Ls[v] ⊇ L′s[u], L′s[u]
ñ L′s[u] is 4-cover of L′s+1[u]
ñ Hence, Ls[v] is 4-cover of L′s+1[u] as adding more elements

cannot destroy the cover-property.

PA 7 Searching and Sorting

© Harald Räcke 140/295

Lemma 25

Ls[v] is a 4-cover of L′s+1[u] and L′s+1[v].

ñ Ls[v] ⊇ L′s[u], L′s[u]
ñ L′s[u] is 4-cover of L′s+1[u]
ñ Hence, Ls[v] is 4-cover of L′s+1[u] as adding more elements

cannot destroy the cover-property.

PA 7 Searching and Sorting

© Harald Räcke 140/295

Lemma 25

Ls[v] is a 4-cover of L′s+1[u] and L′s+1[v].

ñ Ls[v] ⊇ L′s[u], L′s[u]
ñ L′s[u] is 4-cover of L′s+1[u]
ñ Hence, Ls[v] is 4-cover of L′s+1[u] as adding more elements

cannot destroy the cover-property.

PA 7 Searching and Sorting

© Harald Räcke 140/295

Analysis

Lemma 26

Suppose we know for every internal node v with children u and

w
ñ rank(L′s[v] : L′s+1[v])
ñ rank(L′s[u] : L′s[w])
ñ rank(L′s[w] : L′s[u])

We can compute

ñ rank(L′s+1[v] : L′s+2[v])
ñ rank(L′s+1[u] : L′s+1[w])
ñ rank(L′s+1[w] : L′s+1[u])

in constant time and O(|Ls+1[v]|) operations, where v is the

parent of u and w.

PA 7 Searching and Sorting

© Harald Räcke 141/295

Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s[w])
ñ rank(L′s[w] : L′s[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute

ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[u] : L′s+1[w])

Compute

ñ rank(L′s+1[w] : L′s+1[u])
ñ rank(L′s+1[u] : L′s+1[w])

ranks between siblings can be computed easily

PA 7 Searching and Sorting

© Harald Räcke 142/295

Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s[w])
ñ rank(L′s[w] : L′s[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute

ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[u] : L′s+1[w])

Compute

ñ rank(L′s+1[w] : L′s+1[u])
ñ rank(L′s+1[u] : L′s+1[w])

ranks between siblings can be computed easily

PA 7 Searching and Sorting

© Harald Räcke 142/295

Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s[w])
ñ rank(L′s[w] : L′s[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute

ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[u] : L′s+1[w])

Compute

ñ rank(L′s+1[w] : L′s+1[u])
ñ rank(L′s+1[u] : L′s+1[w])

ranks between siblings can be computed easily

PA 7 Searching and Sorting

© Harald Räcke 142/295

Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s+1[w])
ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute (recall that Ls[v] =merge(L′s[u], L′s[w]))
ñ rank(Ls[v] : L′s+1[u])
ñ rank(Ls[v] : L′s+1[w])

Compute

ñ rank(Ls[v] : Ls+1[v]) (by adding)

ñ rank(L′s+1[v] : L′s+2[v]) (by sampling)

PA 7 Searching and Sorting

© Harald Räcke 143/295

Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s+1[w])
ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute (recall that Ls[v] =merge(L′s[u], L′s[w]))
ñ rank(Ls[v] : L′s+1[u])
ñ rank(Ls[v] : L′s+1[w])

Compute

ñ rank(Ls[v] : Ls+1[v]) (by adding)

ñ rank(L′s+1[v] : L′s+2[v]) (by sampling)

PA 7 Searching and Sorting

© Harald Räcke 143/295

Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s+1[w])
ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute (recall that Ls[v] =merge(L′s[u], L′s[w]))
ñ rank(Ls[v] : L′s+1[u])
ñ rank(Ls[v] : L′s+1[w])

Compute

ñ rank(Ls[v] : Ls+1[v]) (by adding)

ñ rank(L′s+1[v] : L′s+2[v]) (by sampling)

PA 7 Searching and Sorting

© Harald Räcke 143/295

Definition 27

A 0-1 sequence S is bitonic if it can be written as the

concatenation of subsequences S1 and S2 such that either

ñ S1 is monotonically increasing and S2 monotonically

decreasing, or

ñ S1 is monotonically decreasing and S2 monotonically

increasing.

Note, that this just defines bitonic 0-1 sequences. Bitonic

sequences are defined differently.

PA 8 Sorting Networks

© Harald Räcke 144/295

Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).

S

SB

ST

Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).

S

SB

ST

Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).

S

SB

ST

Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).

S

SB

ST

Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).

S

SB

ST

Bitonic Merger

Bitonic Merger Bd
The bitonic merger Bd
of dimension d is con-

structed by combining

two bitonic mergers of

dimension d− 1.

If we feed a bitonic 0-1

sequence into this, the

sequence will be sorted.

(actually, any bitonic se-

quence will be sorted,

but we do not prove

this)

Bd−1

Bd−1

Bitonic Merger

Bitonic Merger Bd
The bitonic merger Bd
of dimension d is con-

structed by combining

two bitonic mergers of

dimension d− 1.

If we feed a bitonic 0-1

sequence into this, the

sequence will be sorted.

(actually, any bitonic se-

quence will be sorted,

but we do not prove

this)

Bd−1

Bd−1

Bitonic Merger

Bitonic Merger Bd
The bitonic merger Bd
of dimension d is con-

structed by combining

two bitonic mergers of

dimension d− 1.

If we feed a bitonic 0-1

sequence into this, the

sequence will be sorted.

(actually, any bitonic se-

quence will be sorted,

but we do not prove

this)

Bd−1

Bd−1

Bitonic Sorter Sd

Sd−1

S′d−1

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).

PA 8 Sorting Networks

© Harald Räcke 148/295

Odd-Even Merge
How to merge two sorted sequences?

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), n even.

Split into odd and even sequences:

Aodd = (a1, a3, a5, . . . , an−1), Aeven = (a2, a4, a6, . . . an)
Bodd = (b1, b3, b5, . . . , bn−1), Beven = (b2, b4, b6, . . . , bn)

Let

X =merge(Aodd, Bodd) and Y =merge(Aeven, Beven)

Then

S = (x1,min{x2, y1},max{x2, y1},min{x3, y2}, . . . , yn)

PA 8 Sorting Networks

© Harald Räcke 149/295

Odd-Even Merge
How to merge two sorted sequences?

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), n even.

Split into odd and even sequences:

Aodd = (a1, a3, a5, . . . , an−1), Aeven = (a2, a4, a6, . . . an)
Bodd = (b1, b3, b5, . . . , bn−1), Beven = (b2, b4, b6, . . . , bn)

Let

X =merge(Aodd, Bodd) and Y =merge(Aeven, Beven)

Then

S = (x1,min{x2, y1},max{x2, y1},min{x3, y2}, . . . , yn)

PA 8 Sorting Networks

© Harald Räcke 149/295

Odd-Even Merge
How to merge two sorted sequences?

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), n even.

Split into odd and even sequences:

Aodd = (a1, a3, a5, . . . , an−1), Aeven = (a2, a4, a6, . . . an)
Bodd = (b1, b3, b5, . . . , bn−1), Beven = (b2, b4, b6, . . . , bn)

Let

X =merge(Aodd, Bodd) and Y =merge(Aeven, Beven)

Then

S = (x1,min{x2, y1},max{x2, y1},min{x3, y2}, . . . , yn)

PA 8 Sorting Networks

© Harald Räcke 149/295

Odd-Even Merge
How to merge two sorted sequences?

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), n even.

Split into odd and even sequences:

Aodd = (a1, a3, a5, . . . , an−1), Aeven = (a2, a4, a6, . . . an)
Bodd = (b1, b3, b5, . . . , bn−1), Beven = (b2, b4, b6, . . . , bn)

Let

X =merge(Aodd, Bodd) and Y =merge(Aeven, Beven)

Then

S = (x1,min{x2, y1},max{x2, y1},min{x3, y2}, . . . , yn)

PA 8 Sorting Networks

© Harald Räcke 149/295

Odd-Even Merge

Md−1

Md−1

Theorem 28

There exists a sorting network with depth O(logn) and

O(n logn) comparators.

PA 8 Sorting Networks

© Harald Räcke 151/295

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree

PA 9 Lower Bounds

© Harald Räcke 152/295

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree

PA 9 Lower Bounds

© Harald Räcke 152/295

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree

PA 9 Lower Bounds

© Harald Räcke 152/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.

PA 9 Lower Bounds

© Harald Räcke 153/295

A Lower Bound for Searching

Theorem 29

Given a sorted table X of n elements and an element y.

Searching for y in X requires Ω(logn
log(p+1)) steps in the parallel

comparsion tree with parallelism p < n.

PA 9 Lower Bounds

© Harald Räcke 154/295

A Lower Bound for Maximum

Theorem 30

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.

PA 9 Lower Bounds

© Harald Räcke 155/295

A Lower Bound for Maximum

Theorem 30

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.

PA 9 Lower Bounds

© Harald Räcke 155/295

A Lower Bound for Maximum

Theorem 30

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.

PA 9 Lower Bounds

© Harald Räcke 155/295

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n

A Lower Bound for Maximum

Theorem 31

Computing the maximum of n elements in the comparison tree

requires Ω(log logn) steps whenever the degree of parallelism is

p ≤ n.

Theorem 32

Computing the maximum of n elements requires Ω(log logn)
steps on the comparison PRAM with n processors.

PA 9 Lower Bounds

© Harald Räcke 157/295

A Lower Bound for Maximum

Theorem 31

Computing the maximum of n elements in the comparison tree

requires Ω(log logn) steps whenever the degree of parallelism is

p ≤ n.

Theorem 32

Computing the maximum of n elements requires Ω(log logn)
steps on the comparison PRAM with n processors.

PA 9 Lower Bounds

© Harald Räcke 157/295

An adversary can specify the input such that at the end of the

(i+ 1)-st step the maximum lies in a set Ci+1 of size si+1 such

that

ñ no two elements of Ci+1 have been compared

ñ si+1 ≥ s2
i

2p+ci

PA 9 Lower Bounds

© Harald Räcke 158/295

An adversary can specify the input such that at the end of the

(i+ 1)-st step the maximum lies in a set Ci+1 of size si+1 such

that

ñ no two elements of Ci+1 have been compared

ñ si+1 ≥ s2
i

2p+ci

PA 9 Lower Bounds

© Harald Räcke 158/295

Theorem 33

The selection problem requires Ω(logn/ log logn) steps on a

comparison PRAM.

not proven yet

PA 9 Lower Bounds

© Harald Räcke 159/295

A Lower Bound for Merging

The (k, s)-merging problem, asks to merge k pairs of

subsequences A1, . . . , Ak and B1, . . . , Bk where we know that all

elements in Ai ∪ Bi are smaller than elements in Aj ∪ Bj for

(i < j).

PA 9 Lower Bounds

© Harald Räcke 160/295

A Lower Bound for Merging

Lemma 34

Suppose we are given a parallel comparison tree with

parallelism p to solve the (k, s) merging problem. After the first

step an adversary can specify the input such that an arbitrary

(k′, s′) merging problem has to be solved, where

k′ = 3
4

√
pk

s′ = s
4

√
k
p

PA 9 Lower Bounds

© Harald Räcke 161/295

A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mixy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162/295

A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mixy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162/295

A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mixy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.

PA 9 Lower Bounds

© Harald Räcke 163/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.

PA 9 Lower Bounds

© Harald Räcke 164/295

Lemma 35

Let T(k, s, p) be the number of parallel steps required on a

comparison tree to solve the (k, s) merging problem. Then

T(k,p, s) ≥ 1
4

log
log pk
log p

ks

provided that p ≥ 2ks and p ≤ ks2/4

PA 9 Lower Bounds

© Harald Räcke 165/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log pk
7 log p

ks

≥ 1
4

log
log pk
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log pk
7 log p

ks

≥ 1
4

log
log pk
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log pk
7 log p

ks

≥ 1
4

log
log pk
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log pk
7 log p

ks

≥ 1
4

log
log pk
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log pk
7 log p

ks

≥ 1
4

log
log pk
log p

ks
− 1

This gives the induction step.

PA 9 Lower Bounds

© Harald Räcke 166/295

Theorem 36

Merging requires at least Ω(log logn) time on a CRCW PRAM

with n processors.

PA 9 Lower Bounds

© Harald Räcke 167/295

Simulations between PRAMs

Theorem 37

We can simulate a p-processor priority CRCW PRAM on a

p-processor EREW PRAM with slowdown O(logp).

PA 10 Simulations between PRAMs

© Harald Räcke 168/295

Simulations between PRAMs

Theorem 38

We can simulate a p-processor priority CRCW PRAM on a

p logp-processor common CRCW PRAM with slowdown O(1).

PA 10 Simulations between PRAMs

© Harald Räcke 169/295

Simulations between PRAMs

Theorem 39

We can simulate a p-processor priority CRCW PRAM on a

p-processor common CRCW PRAM with slowdown O(logp
log logp).

PA 10 Simulations between PRAMs

© Harald Räcke 170/295

Simulations between PRAMs

Theorem 40

We can simulate a p-processor priority CRCW PRAM on a

p-processor arbitrary CRCW PRAM with slowdown O(log logp).

PA 10 Simulations between PRAMs

© Harald Räcke 171/295

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 172/295

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 172/295

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 172/295

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 172/295

Lower Bounds for the CREW PRAM

Definition 41

An input index i affects a memory location M at time t on some

input I if the content of M at time t differs between inputs I and

I(i) (i-th bit flipped).

L(M, t, I) = {i | i affects M at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 173/295

Lower Bounds for the CREW PRAM

Definition 41

An input index i affects a memory location M at time t on some

input I if the content of M at time t differs between inputs I and

I(i) (i-th bit flipped).

L(M, t, I) = {i | i affects M at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 173/295

Lower Bounds for the CREW PRAM

Definition 42

An input index i affects a processor P at time t on some input I
if the state of P at time t differs between inputs I and I(i) (i-th
bit flipped).

K(P, t, I) = {i | i affects P at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 174/295

Lower Bounds for the CREW PRAM

Definition 42

An input index i affects a processor P at time t on some input I
if the state of P at time t differs between inputs I and I(i) (i-th
bit flipped).

K(P, t, I) = {i | i affects P at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 174/295

Lower Bounds for the CREW PRAM

Lemma 43

If i ∈ K(P, t, I) with t > 1 then either

ñ i ∈ K(P, t − 1, I), or

ñ P reads a global memory location M on input I at time t,
and i ∈ L(M, t − 1, I).

PA 10 Simulations between PRAMs

© Harald Räcke 175/295

Lower Bounds for the CREW PRAM

Lemma 44

If i ∈ L(M, t, I) with t > 1 then either

ñ A processor writes into M at time t on input I and

i ∈ K(P, t, I), or

ñ No processor writes into M at time t on input I and
ñ either i ∈ L(M, t − 1, I)
ñ or a processor P writes into M at time t on input I(i).

PA 10 Simulations between PRAMs

© Harald Räcke 176/295

Let k0 = 0, `0 = 1 and define

kt+1 = kt + `t and `t+1 = 3kt + 4`t

Lemma 45

|K(P, t, I)| ≤ kt and |L(M, t, I)| ≤ `t for any t ≥ 0

PA 10 Simulations between PRAMs

© Harald Räcke 177/295

Let k0 = 0, `0 = 1 and define

kt+1 = kt + `t and `t+1 = 3kt + 4`t

Lemma 45

|K(P, t, I)| ≤ kt and |L(M, t, I)| ≤ `t for any t ≥ 0

PA 10 Simulations between PRAMs

© Harald Räcke 177/295

base case (t = 0):
ñ No index can influence the local memory/state of a

processor before the first step (hence |K(P,0, I)| = k0 = 0).

ñ Initially every index in the input affects exactly one memory

location. Hence |L(M,0, I)| = 1 = `0.

PA 10 Simulations between PRAMs

© Harald Räcke 178/295

base case (t = 0):
ñ No index can influence the local memory/state of a

processor before the first step (hence |K(P,0, I)| = k0 = 0).

ñ Initially every index in the input affects exactly one memory

location. Hence |L(M,0, I)| = 1 = `0.

PA 10 Simulations between PRAMs

© Harald Räcke 178/295

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 179/295

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)|

≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 179/295

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|

≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 179/295

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 179/295

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + `t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 180/295

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + `t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 180/295

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)|

≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + `t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 180/295

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|

≤ kt + `t
≤ 3kt + `t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 180/295

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t

≤ 3kt + `t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 180/295

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + `t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 180/295

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 181/295

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 181/295

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 181/295

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 181/295

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).

PA 10 Simulations between PRAMs

© Harald Räcke 182/295

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).

PA 10 Simulations between PRAMs

© Harald Räcke 182/295

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).

PA 10 Simulations between PRAMs

© Harald Räcke 182/295

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 183/295

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 183/295

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 183/295

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 183/295

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 183/295

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 184/295

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 184/295

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 184/295

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 184/295

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 184/295

Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/295

Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/295

Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/295

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 = 1
2
(5+

√
21) and λ2 = 1

2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 = 1
2
(5+

√
21) and λ2 = 1

2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 = 1
2
(5+

√
21) and λ2 = 1

2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 = 1
2
(5+

√
21) and λ2 = 1

2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)

Solving the recurrence gives

kt = λt1√
21
− λt2√

21

`t = 3+√21

2
√

21
λt1 +

−3+√21

2
√

21
λt2

with λ1 = 1
2(5+

√
21) and λ2 = 1

2(5−
√

21).

PA 10 Simulations between PRAMs

© Harald Räcke 188/295

Theorem 46

The following problems require logarithmic time on a CREW

PRAM.

ñ Sorting a sequence of x1, . . . , xn with xi ∈ {0,1}
ñ Computing the maximum of n inputs

ñ Computing the sum x1 + · · · + xn with xi ∈ {0,1}

PA 10 Simulations between PRAMs

© Harald Räcke 189/295

A Lower Bound for the EREW PRAM

Definition 47 (Zero Counting Problem)

Given a monotone binary sequence x1, x2, . . . , xn determine the

index i such that xi = 0 and xi+1 = 1.

We show that this problem requires Ω(logn− logp) steps on a

p-processor EREW PRAM.

PA 10 Simulations between PRAMs

© Harald Räcke 190/295

A Lower Bound for the EREW PRAM

Definition 47 (Zero Counting Problem)

Given a monotone binary sequence x1, x2, . . . , xn determine the

index i such that xi = 0 and xi+1 = 1.

We show that this problem requires Ω(logn− logp) steps on a

p-processor EREW PRAM.

PA 10 Simulations between PRAMs

© Harald Räcke 190/295

Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.

PA 10 Simulations between PRAMs

© Harald Räcke 191/295

Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.

PA 10 Simulations between PRAMs

© Harald Räcke 191/295

Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.

PA 10 Simulations between PRAMs

© Harald Räcke 191/295

Lemma 48

If i ∈ K(P, t) then either

ñ i ∈ K(P, t − 1), or

ñ P reads some location M on input Ii (and, hence, also on

Ii−1) at step t and i ∈ L(M, t − 1)

PA 10 Simulations between PRAMs

© Harald Räcke 192/295

Lemma 49

If i ∈ L(M, t) then either

ñ i ∈ L(M, t − 1), or

ñ Some processor P writes M at step t on input Ii and

i ∈ K(P, t).
ñ Some processor P writes M at step t on input Ii−1 and

i ∈ K(P, t).

PA 10 Simulations between PRAMs

© Harald Räcke 193/295

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 194/295

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 194/295

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 194/295

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 194/295

For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 195/295

For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 195/295

For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 195/295

Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 196/295

Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 196/295

Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 196/295

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 197/295

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 197/295

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 197/295

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 197/295

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 197/295

Hence,∑
P
|K(P, t)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198/295

This gives∑
P
K(P, t)+

∑
M

max{0, |L(M, t)| − 1}

≤ 4
∑
M

max{0, |L(M, t − 1)| − 1} + 6
∑
P
|K(P, t − 1)| + 3|P |

Hence,

C(t) ≤ 6C(t − 1)+ 3|P |

PA 10 Simulations between PRAMs

© Harald Räcke 199/295

This gives∑
P
K(P, t)+

∑
M

max{0, |L(M, t)| − 1}

≤ 4
∑
M

max{0, |L(M, t − 1)| − 1} + 6
∑
P
|K(P, t − 1)| + 3|P |

Hence,

C(t) ≤ 6C(t − 1)+ 3|P |

PA 10 Simulations between PRAMs

© Harald Räcke 199/295

Bufferfly Network BF(d)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0

1

2

3

4

ñ node set V = {(`, x̄) | x̄ ∈ [2]d, ` ∈ [d+ 1]}, where
x̄ = x0 x1 . . . xd−1 is a bit-string of length d

ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

Sometimes the first and last level are identified.

Beneš Network

000

001

010

011

100

101

110

111

0 1-1 2-2 3-3

ñ node set V = {(`, x̄) | x̄ ∈ [2]d, ` ∈ {−d, . . . , d}}
ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

∪ {{(−`, x̄), (` − 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

n-ary Bufferfly Network BF(n, d)

000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

0

1

2

3

ñ node set V = {(`, x̄) | x̄ ∈ [n]d, ` ∈ [d+ 1]}, where
x̄ = x0 x1 . . . xd−1 is a bit-string of length d

ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [n]d, x′i = xi for i ≠ `}

Permutation Network PN(n, d)

000

001

010

011

100

101

110

111

0 1-1 2-2 3-3

ñ There is an n-ary version of the Benes network (2 n-ary
butterflies glued at level 0).

ñ identifying levels 0 and 1 (or 0 and −1) gives PN(n,d).

The d-dimensional mesh M(n, d)

ñ node set V = [n]d

ñ edge set E = {{(x0, . . . , xi, . . . , xd−1), (x0, . . . , xi + 1, . . . , xd−1)} |
xs ∈ [n] for s ∈ [d] \ {i}, xi ∈ [n− 1]}

Remarks

M(2, d) is also called d-dimensional hypercube.

M(n,1) is also called linear array of length n.

PA 11 Some Networks

© Harald Räcke 205/295

Permutation Routing

Lemma 50

On the linear array M(n,1) any permutation can be routed

online in 2n steps with buffersize 3.

PA 11 Some Networks

© Harald Räcke 206/295

Permutation Routing

Lemma 51

On the Beneš network any permutation can be routed offline in

2d steps between the sources level (+d) and target level (−d).

PA 11 Some Networks

© Harald Räcke 207/295

Recursive Beneš Network

B(d − 1)

B(d − 1)

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.

Lemma 52

On a d-dimensional mesh with sidelength n we can route any

permutation (offline) in 4dn steps.

PA 11 Some Networks

© Harald Räcke 211/295

We can simulate the algorithm for the n-ary Beneš Network.

Each step can be simulated by routing on disjoint linear arrays.

This takes at most 2n steps.

PA 11 Some Networks

© Harald Räcke 212/295

We can simulate the algorithm for the n-ary Beneš Network.

Each step can be simulated by routing on disjoint linear arrays.

This takes at most 2n steps.

PA 11 Some Networks

© Harald Räcke 212/295

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

Lemma 53

We can route any permutation on the Beneš network in O(d)
steps with constant buffer size.

The same is true for the butterfly network.

PA 11 Some Networks

© Harald Räcke 214/295

Lemma 53

We can route any permutation on the Beneš network in O(d)
steps with constant buffer size.

The same is true for the butterfly network.

PA 11 Some Networks

© Harald Räcke 214/295

The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.

PA 11 Some Networks

© Harald Räcke 215/295

The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.

PA 11 Some Networks

© Harald Räcke 215/295

The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.

PA 11 Some Networks

© Harald Räcke 215/295

The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.

PA 11 Some Networks

© Harald Räcke 215/295

The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.

PA 11 Some Networks

© Harald Räcke 215/295

Lemma 54

We can do offline permutation routing of (partial) permutations

in 2d steps on the hypercube.

Lemma 55

We can sort on the hypercube M(2, d) in O(d2) steps.

Lemma 56

We can do online permutation routing of permutations in O(d2)
steps on the hypercube.

PA 11 Some Networks

© Harald Räcke 216/295

Lemma 54

We can do offline permutation routing of (partial) permutations

in 2d steps on the hypercube.

Lemma 55

We can sort on the hypercube M(2, d) in O(d2) steps.

Lemma 56

We can do online permutation routing of permutations in O(d2)
steps on the hypercube.

PA 11 Some Networks

© Harald Räcke 216/295

Lemma 54

We can do offline permutation routing of (partial) permutations

in 2d steps on the hypercube.

Lemma 55

We can sort on the hypercube M(2, d) in O(d2) steps.

Lemma 56

We can do online permutation routing of permutations in O(d2)
steps on the hypercube.

PA 11 Some Networks

© Harald Räcke 216/295

Bitonic Sorter Sd

Sd−1

S′d−1

ASCEND/DESCEND Programs

Algorithm 11 ASCEND(procedure oper)
1: for dim = 0 to d− 1

2: for all ā ∈ [2]d pardo

3: oper(ā, ā(dim),dim)

Algorithm 11 DESCEND(procedure oper)
1: for dim = d− 1 to 0

2: for all ā ∈ [2]d pardo

3: oper(ā, ā(dim),dim)

oper should only depend on the dimension and on values stored

in the respective processor pair (ā, ā(dim), V[ā], V[ā(dim)]).

oper should take constant time.

PA 11 Some Networks

© Harald Räcke 218/295

Algorithm 11 oper(a,a′,dim, Ta, Ta′)
1: if adim, . . . , a0 = 0dim+1 then

2: Ta =min{Ta, Ta′}

Performing an ASCEND run with this operation computes the

minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run

followed by an ASCEND run.

PA 11 Some Networks

© Harald Räcke 219/295

Algorithm 11 oper(a,a′,dim, Ta, Ta′)
1: if adim, . . . , a0 = 0dim+1 then

2: Ta =min{Ta, Ta′}

Performing an ASCEND run with this operation computes the

minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run

followed by an ASCEND run.

PA 11 Some Networks

© Harald Räcke 219/295

Algorithm 11 oper(a,a′,dim, Ta, Ta′)
1: if adim, . . . , a0 = 0dim+1 then

2: Ta =min{Ta, Ta′}

Performing an ASCEND run with this operation computes the

minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run

followed by an ASCEND run.

PA 11 Some Networks

© Harald Räcke 219/295

Algorithm 11 oper(a,a′,dim, Ta, Ta′)
1: if adim, . . . , a0 = 0dim+1 then

2: Ta =min{Ta, Ta′}

Performing an ASCEND run with this operation computes the

minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run

followed by an ASCEND run.

PA 11 Some Networks

© Harald Räcke 219/295

We can perform an ASCEND/DESCEND run on a linear array

M(2d,1) in O(2d) steps.

PA 11 Some Networks

© Harald Räcke 220/295

The CCC network is obtained from a hypercube by replacing

every node by a cycle of degree d.

ñ nodes {(`, x̄) | x̄ ∈ [2]d, ` ∈ [d]}
ñ edges {{(`, x̄), (`, x̄(`)} | x ∈ [2]d, ` ∈ [d]}

constand degree

PA 11 Some Networks

© Harald Räcke 221/295

Lemma 57

Let d = 2k. An ASCEND run of a hypercube M(2, d+ k) can be

simulated on CCC(d) in O(d) steps.

PA 11 Some Networks

© Harald Räcke 222/295

The shuffle exchange network SE(d) is defined as follows

ñ nodes: V = [2]d

ñ edges:
E =

{
{xᾱ, ᾱx} | x ∈ [2], ᾱ ∈ [2]d−1

}
∪
{
{ᾱ0, ᾱ1} | ᾱ ∈ [2]d−1

}

constand degree

Edges of the first type are called shuffle edges. Edges of the

second type are called exchange edges

PA 11 Some Networks

© Harald Räcke 223/295

Shuffle Exchange Networks

010 011

100 101

000 110 111001

1000 1001 1100 1101

0010 0011 0110 0111

11110000 0001 111010110100
0101 1010

PA 11 Some Networks

© Harald Räcke 224/295

Lemma 58

We can perform an ASCEND run of M(2, d) on SE(d) in O(d)
steps.

PA 11 Some Networks

© Harald Räcke 225/295

Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.

PA 11 Some Networks

© Harald Räcke 226/295

Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.

PA 11 Some Networks

© Harald Räcke 226/295

Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.

PA 11 Some Networks

© Harald Räcke 226/295

Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.

PA 11 Some Networks

© Harald Räcke 226/295

Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.

PA 11 Some Networks

© Harald Räcke 226/295

Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.

PA 11 Some Networks

© Harald Räcke 226/295

Simulations between Networks

Definition 59

A configuration Ci of processor Pi is the complete description of

the state of Pi including local memory, program counter,

read-register, write-register, etc.

Suppose a machine M is in configuration (C0, . . . , Cp−1),
performs t synchronous steps, and is then in configuration

C = (C′0, . . . , C′p−1).

C′i is called the t-th successor configuration of C for processor i.

PA 11 Some Networks

© Harald Räcke 227/295

Simulations between Networks

Definition 59

A configuration Ci of processor Pi is the complete description of

the state of Pi including local memory, program counter,

read-register, write-register, etc.

Suppose a machine M is in configuration (C0, . . . , Cp−1),
performs t synchronous steps, and is then in configuration

C = (C′0, . . . , C′p−1).

C′i is called the t-th successor configuration of C for processor i.

PA 11 Some Networks

© Harald Räcke 227/295

Simulations between Networks

Definition 59

A configuration Ci of processor Pi is the complete description of

the state of Pi including local memory, program counter,

read-register, write-register, etc.

Suppose a machine M is in configuration (C0, . . . , Cp−1),
performs t synchronous steps, and is then in configuration

C = (C′0, . . . , C′p−1).

C′i is called the t-th successor configuration of C for processor i.

PA 11 Some Networks

© Harald Räcke 227/295

Simulations between Networks

Definition 60

Let C = (C0, . . . , Cp−1) a configuration of M. A machine M′ with

q ≥ p processors weakly simulates t steps of M with slowdown k
if

ñ in the beginning there are p non-empty processors sets

A0, . . . , Ap−1 ⊆ M′ so that all processors in Ai know Ci;
ñ after at most k · t steps of M′ there is a processor Q(i) that

knows the t-th successors configuration of C for processor

Pi.

PA 11 Some Networks

© Harald Räcke 228/295

Simulations between Networks

Definition 61

M′ simulates M with slowdown k if

ñ M′ weakly simulates machine M with slowdown k
ñ and every processor in Ai knows the t-th successor

configuration of C for processor Pi.

PA 11 Some Networks

© Harald Räcke 229/295

We have seen how to simulate an ASCEND/DESCEND run of the

hypercube M(2, d+ k) on CCC(d) with d = 2k in O(d) steps.

Hence, we can simulate d+ k steps (one ASCEND run) of the

hypercube in O(d) steps. This means slowdown O(1).

PA 11 Some Networks

© Harald Räcke 230/295

Lemma 62

Suppose a network S with n processors can route any

permutation in time O(t(n)). Then S can simulate any constant

degree network M with at most n vertices with slowdown

O(t(n)).

PA 11 Some Networks

© Harald Räcke 231/295

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.

PA 11 Some Networks

© Harald Räcke 232/295

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.

PA 11 Some Networks

© Harald Räcke 232/295

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.

PA 11 Some Networks

© Harald Räcke 232/295

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.

PA 11 Some Networks

© Harald Räcke 232/295

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.

PA 11 Some Networks

© Harald Räcke 232/295

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.

PA 11 Some Networks

© Harald Räcke 232/295

Lemma 63

Suppose a network S with n processors can sort n numbers in

time O(t(n)). Then S can simulate any network M with at most

n vertices with slowdown O(t(n)).

PA 11 Some Networks

© Harald Räcke 233/295

Lemma 64

There is a constant degree network on O(n1+ε) nodes that can

simulate any constant degree network with slowdown O(1).

PA 11 Some Networks

© Harald Räcke 234/295

Suppose we allow concurrent reads, this means in every step all

neighbours of a processor Pi can read Pi’s read register.

Lemma 65

A constant degree network M that can simulate any n-node

network has slowdown O(logn) (independent of the size of M).

PA 11 Some Networks

© Harald Räcke 235/295

Suppose we allow concurrent reads, this means in every step all

neighbours of a processor Pi can read Pi’s read register.

Lemma 65

A constant degree network M that can simulate any n-node

network has slowdown O(logn) (independent of the size of M).

PA 11 Some Networks

© Harald Räcke 235/295

We show the lemma for the following type of simulation.

ñ There are representative sets Ati for every step t that specify

which processors of M simulate processor Pi in step t
(know the configuration of Pi after the t-th step).

ñ The representative sets for different processors are disjoint.

ñ for all i ∈ {1, . . . , n} and steps t, Ati ≠ �.

This is a step-by-step simulation.

PA 11 Some Networks

© Harald Räcke 236/295

We show the lemma for the following type of simulation.

ñ There are representative sets Ati for every step t that specify

which processors of M simulate processor Pi in step t
(know the configuration of Pi after the t-th step).

ñ The representative sets for different processors are disjoint.

ñ for all i ∈ {1, . . . , n} and steps t, Ati ≠ �.

This is a step-by-step simulation.

PA 11 Some Networks

© Harald Räcke 236/295

Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt

PA 11 Some Networks

© Harald Räcke 237/295

Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt

PA 11 Some Networks

© Harald Räcke 237/295

Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt

PA 11 Some Networks

© Harald Räcke 237/295

Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt

PA 11 Some Networks

© Harald Räcke 237/295

Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt

PA 11 Some Networks

© Harald Räcke 237/295

We show

ñ The simulation of a step takes at least time γ logn, or

ñ the size of the representative sets shrinks by a lot

∑
i
|At+1
i | ≤ 1

nε
∑
i
|Ati|

PA 11 Some Networks

© Harald Räcke 238/295

We show

ñ The simulation of a step takes at least time γ logn, or

ñ the size of the representative sets shrinks by a lot

∑
i
|At+1
i | ≤ 1

nε
∑
i
|Ati|

PA 11 Some Networks

© Harald Räcke 238/295

Suppose there is no pair (i, j) such that i reading from j
requires time γ logn.

ñ For every i the set Γ2k(Ai) contains a node from Aj.
ñ Hence, there must exist a ji such that Γ2k(Ai) contains at

most

|Cji| := |Ai| · c
2k

n− 1
≤ |Ai| · c

3k

n
.

processors from |Aji|

PA 11 Some Networks

© Harald Räcke 239/295

Suppose there is no pair (i, j) such that i reading from j
requires time γ logn.

ñ For every i the set Γ2k(Ai) contains a node from Aj.
ñ Hence, there must exist a ji such that Γ2k(Ai) contains at

most

|Cji| := |Ai| · c
2k

n− 1
≤ |Ai| · c

3k

n
.

processors from |Aji|

PA 11 Some Networks

© Harald Räcke 239/295

Suppose there is no pair (i, j) such that i reading from j
requires time γ logn.

ñ For every i the set Γ2k(Ai) contains a node from Aj.
ñ Hence, there must exist a ji such that Γ2k(Ai) contains at

most

|Cji| := |Ai| · c
2k

n− 1
≤ |Ai| · c

3k

n
.

processors from |Aji|

PA 11 Some Networks

© Harald Räcke 239/295

If we choose that i reads from ji we get

|A′i|

≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.

PA 11 Some Networks

© Harald Räcke 240/295

If we choose that i reads from ji we get

|A′i| ≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.

PA 11 Some Networks

© Harald Räcke 240/295

If we choose that i reads from ji we get

|A′i| ≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.

PA 11 Some Networks

© Harald Räcke 240/295

If we choose that i reads from ji we get

|A′i| ≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.

PA 11 Some Networks

© Harald Räcke 240/295

If we choose that i reads from ji we get

|A′i| ≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.

PA 11 Some Networks

© Harald Räcke 240/295

If we choose that i reads from ji we get

|A′i| ≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.

PA 11 Some Networks

© Harald Räcke 240/295

Let ` be the total number of steps and s be the number of short

steps when kt < γ logn.

In a step of time kt a representative set can at most increase by

ckt+1.

Let h` denote the number of representatives after step `.

PA 11 Some Networks

© Harald Räcke 241/295

Let ` be the total number of steps and s be the number of short

steps when kt < γ logn.

In a step of time kt a representative set can at most increase by

ckt+1.

Let h` denote the number of representatives after step `.

PA 11 Some Networks

© Harald Räcke 241/295

Let ` be the total number of steps and s be the number of short

steps when kt < γ logn.

In a step of time kt a representative set can at most increase by

ckt+1.

Let h` denote the number of representatives after step `.

PA 11 Some Networks

© Harald Räcke 241/295

n ≤ h` ≤ h0

(1
nε
)s ∏
t∈long

ckt+1 ≤ n
nεs

· c`+
∑
t kt

If
∑
t kt ≥ `(ε2 logc n− 1), we are done. Otw.

n ≤ n1−εs+` ε2

This gives s ≤ `/2 .

Hence, at most 50% of the steps are short.

PA 11 Some Networks

© Harald Räcke 242/295

n ≤ h` ≤ h0

(1
nε
)s ∏
t∈long

ckt+1 ≤ n
nεs

· c`+
∑
t kt

If
∑
t kt ≥ `(ε2 logc n− 1), we are done. Otw.

n ≤ n1−εs+` ε2

This gives s ≤ `/2 .

Hence, at most 50% of the steps are short.

PA 11 Some Networks

© Harald Räcke 242/295

n ≤ h` ≤ h0

(1
nε
)s ∏
t∈long

ckt+1 ≤ n
nεs

· c`+
∑
t kt

If
∑
t kt ≥ `(ε2 logc n− 1), we are done. Otw.

n ≤ n1−εs+` ε2

This gives s ≤ `/2 .

Hence, at most 50% of the steps are short.

PA 11 Some Networks

© Harald Räcke 242/295

n ≤ h` ≤ h0

(1
nε
)s ∏
t∈long

ckt+1 ≤ n
nεs

· c`+
∑
t kt

If
∑
t kt ≥ `(ε2 logc n− 1), we are done. Otw.

n ≤ n1−εs+` ε2

This gives s ≤ `/2 .

Hence, at most 50% of the steps are short.

PA 11 Some Networks

© Harald Räcke 242/295

Deterministic Online Routing

Lemma 66

A permutation on an n×n-mesh can be routed online in O(n)
steps.

PA 11 Some Networks

© Harald Räcke 243/295

Deterministic Online Routing

Definition 67 (Oblivious Routing)

Specify a path-system W with a path Pu,v between u and v for

every pair {u,v} ∈ V × V .

A packet with source u and destination v moves along path Pu,v .

PA 11 Some Networks

© Harald Räcke 244/295

Deterministic Online Routing

Definition 68 (Oblivious Routing)

Specify a path-system W with a path Pu,v between u and v for

every pair {u,v} ∈ V × V .

Definition 69 (node congestion)

For a given path-system the node congestion is the maximum

number of path that go through any node v ∈ V .

Definition 70 (edge congestion)

For a given path-system the edge congestion is the maximum

number of path that go through any edge e ∈ E.

PA 11 Some Networks

© Harald Räcke 245/295

Deterministic Online Routing

Definition 71 (dilation)

For a given path system the dilation is the maximum length of a

path.

PA 11 Some Networks

© Harald Räcke 246/295

Lemma 72

Any oblivious routing protocol requires at least max{Cf ,Df }
steps, where Cf and Df , are the congestion and dilation,

respectively, of the path-system used. (node congestion or edge

congestion depending on the communication model)

Lemma 73

Any reasonable oblivious routing protocol requires at most

O(Df · Cf) steps (unbounded buffers).

PA 11 Some Networks

© Harald Räcke 247/295

Theorem 74 (Borodin, Hopcroft)

For any path system W there exists a permutation π : V → V
and an edge e ∈ E such that at least Ω(

√
n/∆) of the paths go

through e.

PA 11 Some Networks

© Harald Räcke 248/295

Let Wv = {Pv,u | u ∈ V}.

We say that an edge e is z-popular for v if at least z paths from

Wv contain e.

PA 11 Some Networks

© Harald Räcke 249/295

For any node v there are many edges that are are quite popular

for v.

|V | × |E|-matrix A(z):

Av,e(z) =
{

1 e is z-popular for v
0 otherwise

Define

ñ

Av(z) =
∑
e
Av,e(z)

ñ

Ae(z) =
∑
v
Av,e(z)

PA 11 Some Networks

© Harald Räcke 250/295

Lemma 75

Let z ≤ n−1
∆ .

For every node v ∈ V there exist at least n
2∆z edges that are z

popular for v. This means

Av(z) ≥ n
2∆z

PA 11 Some Networks

© Harald Räcke 251/295

Lemma 76

There exists an edge e′ that is z-popular for at least z nodes

with z = Ω(√n∆).

∑
e
Ae(z) =

∑
v
Av(z) ≥ n2

2∆z

There must exist an edge e′

Ae′(z) ≥
⌈

n2

|E| · 2∆z

⌉
≥
⌈
n

2∆2z

⌉

where the last step follows from |E| ≤ ∆n.

PA 11 Some Networks

© Harald Räcke 252/295

We choose z such that z = n
2∆2z (i.e., z = √n/(√2∆)).

This means e′ is dze-popular for dze nodes.

We can construct a permutation such that z paths go through e′.

PA 11 Some Networks

© Harald Räcke 253/295

Deterministic oblivious routing may perform very poorly.

What happens if we have a random routing problem in a

butterfly?

PA 11 Some Networks

© Harald Räcke 254/295

Suppose every source on level 0 has p packets, that are routed

to random destinations.

How many packets go over node v on level i?

From v we can reach 2d/2i different targets.

Hence,

Pr[packet goes over v] ≤ 2d−i

2d
= 1

2i

PA 11 Some Networks

© Harald Räcke 255/295

Suppose every source on level 0 has p packets, that are routed

to random destinations.

How many packets go over node v on level i?

From v we can reach 2d/2i different targets.

Hence,

Pr[packet goes over v] ≤ 2d−i

2d
= 1

2i

PA 11 Some Networks

© Harald Räcke 255/295

Suppose every source on level 0 has p packets, that are routed

to random destinations.

How many packets go over node v on level i?

From v we can reach 2d/2i different targets.

Hence,

Pr[packet goes over v] ≤ 2d−i

2d
= 1

2i

PA 11 Some Networks

© Harald Räcke 255/295

Suppose every source on level 0 has p packets, that are routed

to random destinations.

How many packets go over node v on level i?

From v we can reach 2d/2i different targets.

Hence,

Pr[packet goes over v] ≤ 2d−i

2d
= 1

2i

PA 11 Some Networks

© Harald Räcke 255/295

Expected number of packets:

E[packets over v] = p · 2i · 1
2i
= p

since only p2i packets can reach v.

But this is trivial.

PA 11 Some Networks

© Harald Räcke 256/295

Expected number of packets:

E[packets over v] = p · 2i · 1
2i
= p

since only p2i packets can reach v.

But this is trivial.

PA 11 Some Networks

© Harald Räcke 256/295

What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r

PA 11 Some Networks

© Harald Räcke 257/295

What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r

PA 11 Some Networks

© Harald Räcke 257/295

What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r

PA 11 Some Networks

© Harald Räcke 257/295

What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r

PA 11 Some Networks

© Harald Räcke 257/295

What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r

PA 11 Some Networks

© Harald Räcke 257/295

What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r

PA 11 Some Networks

© Harald Räcke 257/295

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
Choose r as 2ep + (` + 1)d+ logd = O(p + logN), where N is

number of sources in BF(d).

Pr[exists node v with more than r paths over v] ≤ 1

N`

PA 11 Some Networks

© Harald Räcke 258/295

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
Choose r as 2ep + (` + 1)d+ logd = O(p + logN), where N is

number of sources in BF(d).

Pr[exists node v with more than r paths over v] ≤ 1

N`

PA 11 Some Networks

© Harald Räcke 258/295

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
Choose r as 2ep + (` + 1)d+ logd = O(p + logN), where N is

number of sources in BF(d).

Pr[exists node v with more than r paths over v] ≤ 1

N`

PA 11 Some Networks

© Harald Räcke 258/295

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
Choose r as 2ep + (` + 1)d+ logd = O(p + logN), where N is

number of sources in BF(d).

Pr[exists node v with more than r paths over v] ≤ 1

N`

PA 11 Some Networks

© Harald Räcke 258/295

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
Choose r as 2ep + (` + 1)d+ logd = O(p + logN), where N is

number of sources in BF(d).

Pr[exists node v with more than r paths over v] ≤ 1

N`

PA 11 Some Networks

© Harald Räcke 258/295

Scheduling Packets

Assume that in every round a node may forward at most one

packet but may receive up to two.

We select a random rank Rp ∈ [k]. Whenever, we forward a

packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol

PA 11 Some Networks

© Harald Räcke 259/295

Scheduling Packets

Assume that in every round a node may forward at most one

packet but may receive up to two.

We select a random rank Rp ∈ [k]. Whenever, we forward a

packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol

PA 11 Some Networks

© Harald Räcke 259/295

Scheduling Packets

Assume that in every round a node may forward at most one

packet but may receive up to two.

We select a random rank Rp ∈ [k]. Whenever, we forward a

packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol

PA 11 Some Networks

© Harald Räcke 259/295

Scheduling Packets

Assume that in every round a node may forward at most one

packet but may receive up to two.

We select a random rank Rp ∈ [k]. Whenever, we forward a

packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol

PA 11 Some Networks

© Harald Räcke 259/295

Definition 77 (Delay Sequence of length s)

ñ delay path W
ñ lengths `0, `1, . . . , `s , with `0 ≥ 1, `1, . . . , `s ≥ 0 lengths of

delay-free sub-paths

ñ collision nodes v0, v1, . . . , vs , vs+1

ñ collision packets P0, . . . , Ps

PA 11 Some Networks

© Harald Räcke 260/295

Definition 77 (Delay Sequence of length s)

ñ delay path W
ñ lengths `0, `1, . . . , `s , with `0 ≥ 1, `1, . . . , `s ≥ 0 lengths of

delay-free sub-paths

ñ collision nodes v0, v1, . . . , vs , vs+1

ñ collision packets P0, . . . , Ps

PA 11 Some Networks

© Harald Räcke 260/295

Definition 77 (Delay Sequence of length s)

ñ delay path W
ñ lengths `0, `1, . . . , `s , with `0 ≥ 1, `1, . . . , `s ≥ 0 lengths of

delay-free sub-paths

ñ collision nodes v0, v1, . . . , vs , vs+1

ñ collision packets P0, . . . , Ps

PA 11 Some Networks

© Harald Räcke 260/295

Definition 77 (Delay Sequence of length s)

ñ delay path W
ñ lengths `0, `1, . . . , `s , with `0 ≥ 1, `1, . . . , `s ≥ 0 lengths of

delay-free sub-paths

ñ collision nodes v0, v1, . . . , vs , vs+1

ñ collision packets P0, . . . , Ps

PA 11 Some Networks

© Harald Räcke 260/295

Properties

ñ rank(P0) ≥ rank(P1) ≥ · · · ≥ rank(Ps)
ñ
∑s
i=0 `i = d

ñ if the routing takes d+ s steps than the delay sequence has

length s

PA 11 Some Networks

© Harald Räcke 261/295

Properties

ñ rank(P0) ≥ rank(P1) ≥ · · · ≥ rank(Ps)
ñ
∑s
i=0 `i = d

ñ if the routing takes d+ s steps than the delay sequence has

length s

PA 11 Some Networks

© Harald Räcke 261/295

Properties

ñ rank(P0) ≥ rank(P1) ≥ · · · ≥ rank(Ps)
ñ
∑s
i=0 `i = d

ñ if the routing takes d+ s steps than the delay sequence has

length s

PA 11 Some Networks

© Harald Räcke 261/295

Definition 78 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0

PA 11 Some Networks

© Harald Räcke 262/295

Definition 78 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0

PA 11 Some Networks

© Harald Räcke 262/295

Definition 78 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0

PA 11 Some Networks

© Harald Räcke 262/295

Definition 78 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0

PA 11 Some Networks

© Harald Räcke 262/295

Definition 78 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0

PA 11 Some Networks

© Harald Räcke 262/295

We say a formal delay sequence is active if rank(Pi) = ki holds

for all i.

Let Ns be the number of formal delay sequences of length at

most s. Then

Pr[routing needs at least d+ s steps] ≤ Ns
ks+1

PA 11 Some Networks

© Harald Räcke 263/295

We say a formal delay sequence is active if rank(Pi) = ki holds

for all i.

Let Ns be the number of formal delay sequences of length at

most s. Then

Pr[routing needs at least d+ s steps] ≤ Ns
ks+1

PA 11 Some Networks

© Harald Räcke 263/295

Lemma 79

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k

PA 11 Some Networks

© Harald Räcke 264/295

Lemma 79

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k

PA 11 Some Networks

© Harald Räcke 264/295

Lemma 79

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k

PA 11 Some Networks

© Harald Räcke 264/295

Lemma 79

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k

PA 11 Some Networks

© Harald Räcke 264/295

Lemma 79

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k

PA 11 Some Networks

© Harald Räcke 264/295

Lemma 79

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k

PA 11 Some Networks

© Harald Räcke 264/295

Hence the probability that the routing takes more than d+ s
steps is at most

N3 ·
(

2e · C · (s + k)
(s + 1)k

)s+1

We choose s = 8eC − 1+ (` + 3)d and k = s + 1. This gives that

the probability is at most 1
N` .

PA 11 Some Networks

© Harald Räcke 265/295

Hence the probability that the routing takes more than d+ s
steps is at most

N3 ·
(

2e · C · (s + k)
(s + 1)k

)s+1

We choose s = 8eC − 1+ (` + 3)d and k = s + 1. This gives that

the probability is at most 1
N` .

PA 11 Some Networks

© Harald Räcke 265/295

ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

PA 11 Some Networks

© Harald Räcke 266/295

ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

PA 11 Some Networks

© Harald Räcke 266/295

ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

PA 11 Some Networks

© Harald Räcke 266/295

ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

PA 11 Some Networks

© Harald Räcke 266/295

ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

PA 11 Some Networks

© Harald Räcke 266/295

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used

ñ all routing paths are of the same length d
ñ there are a polynomial number of delay paths

Choose paths as follows:

ñ route from source to random destination on target level

ñ route to real target column (albeit on source level)

ñ route to target

All phases run in time O(p + d) with high probability.

PA 11 Some Networks

© Harald Räcke 267/295

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used

ñ all routing paths are of the same length d
ñ there are a polynomial number of delay paths

Choose paths as follows:

ñ route from source to random destination on target level

ñ route to real target column (albeit on source level)

ñ route to target

All phases run in time O(p + d) with high probability.

PA 11 Some Networks

© Harald Räcke 267/295

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used

ñ all routing paths are of the same length d
ñ there are a polynomial number of delay paths

Choose paths as follows:

ñ route from source to random destination on target level

ñ route to real target column (albeit on source level)

ñ route to target

All phases run in time O(p + d) with high probability.

PA 11 Some Networks

© Harald Räcke 267/295

Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used

ñ all routing paths are of the same length d
ñ there are a polynomial number of delay paths

Choose paths as follows:

ñ route from source to random destination on target level

ñ route to real target column (albeit on source level)

ñ route to target

All phases run in time O(p + d) with high probability.

PA 11 Some Networks

© Harald Räcke 267/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i

PA 11 Some Networks

© Harald Räcke 268/295

Valiants Trick

A Balanced Multicommodity Flow Problem is a concurrent

multicommodity flow problem in which incoming and outgoing

flow is equal to

c(v) =
∑

e=(v,x)∈E
c(e)

PA 11 Some Networks

© Harald Räcke 269/295

Valiants Trick

For a multicommodity flow S we assume that we have a

decomposition of the flow(s) into flow-paths.

We use C(S) to denote the congestion of the flow problem

(inverse of througput fraction), and D(S) the length of the

longest routing path.

PA 11 Some Networks

© Harald Räcke 270/295

Valiants Trick

For a multicommodity flow S we assume that we have a

decomposition of the flow(s) into flow-paths.

We use C(S) to denote the congestion of the flow problem

(inverse of througput fraction), and D(S) the length of the

longest routing path.

PA 11 Some Networks

© Harald Räcke 270/295

For a network G = (V , E, c) we define the characteristic flow

problem via

ñ demands du,v = c(u)c(v)
c(V)

Suppose the characteristic flow problem has a solution S with

C(S) ≤ F and D(S) ≤ F .

PA 11 Some Networks

© Harald Räcke 271/295

For a network G = (V , E, c) we define the characteristic flow

problem via

ñ demands du,v = c(u)c(v)
c(V)

Suppose the characteristic flow problem has a solution S with

C(S) ≤ F and D(S) ≤ F .

PA 11 Some Networks

© Harald Räcke 271/295

Definition 80

A (randomized) oblivious routing scheme is given by a path

system P and a weight function w such that∑
p∈Ps,t

w(p) = 1

PA 11 Some Networks

© Harald Räcke 272/295

Construct an oblivious routing scheme from S as follows:

ñ let fx,y be the flow between x and y in S
ñ

fx,y ≥ dx,y/C(S) ≥ dx,y/F = 1
F
c(x)c(y)
c(V)

ñ for p ∈ Px,y set w(p) = fp/fx,y

gives an oblivious routing scheme.

PA 11 Some Networks

© Harald Räcke 273/295

Valiants Trick

We apply this routing scheme twice:

ñ first choose a path from Ps,v , where v is chosen uniformly

according to c(v)/c(V)
ñ then choose path according to Pv,t

If the input flow problem/packet routing problem is balanced

doing this randomization results in flow solution S (twice).

Hence, we have an oblivious scheme with congestion and

dilation at most 2F for (balanced inputs).

PA 11 Some Networks

© Harald Räcke 274/295

Valiants Trick

We apply this routing scheme twice:

ñ first choose a path from Ps,v , where v is chosen uniformly

according to c(v)/c(V)
ñ then choose path according to Pv,t

If the input flow problem/packet routing problem is balanced

doing this randomization results in flow solution S (twice).

Hence, we have an oblivious scheme with congestion and

dilation at most 2F for (balanced inputs).

PA 11 Some Networks

© Harald Räcke 274/295

Example: hypercube.

PA 11 Some Networks

© Harald Räcke 275/295

Oblivious Routing for the Mesh

We can route any permutation on an n×n mesh in O(n) steps,

by x-y routing. Actually O(d) steps where d is the largest

distance between a source-target pair.

What happens if we do not have a permutation?

x −y routing may generate large congestion if some pairs have

a lot of packets.

Valiants trick may create a large dilation.

PA 11 Some Networks

© Harald Räcke 276/295

Oblivious Routing for the Mesh

We can route any permutation on an n×n mesh in O(n) steps,

by x-y routing. Actually O(d) steps where d is the largest

distance between a source-target pair.

What happens if we do not have a permutation?

x −y routing may generate large congestion if some pairs have

a lot of packets.

Valiants trick may create a large dilation.

PA 11 Some Networks

© Harald Räcke 276/295

Oblivious Routing for the Mesh

We can route any permutation on an n×n mesh in O(n) steps,

by x-y routing. Actually O(d) steps where d is the largest

distance between a source-target pair.

What happens if we do not have a permutation?

x −y routing may generate large congestion if some pairs have

a lot of packets.

Valiants trick may create a large dilation.

PA 11 Some Networks

© Harald Räcke 276/295

Oblivious Routing for the Mesh

We can route any permutation on an n×n mesh in O(n) steps,

by x-y routing. Actually O(d) steps where d is the largest

distance between a source-target pair.

What happens if we do not have a permutation?

x −y routing may generate large congestion if some pairs have

a lot of packets.

Valiants trick may create a large dilation.

PA 11 Some Networks

© Harald Räcke 276/295

Let for a multicommodity flow problem P Copt(P) be the

optimum congestion, and Dopt(P) be the optimum dilation (by

perhaps different flow solutions).

Lemma 81

There is an oblivious routing scheme for the mesh that obtains a

flow solution S with C(S) = O(Copt(P) logn) and

D(S) = O(Dopt(P)).

PA 11 Some Networks

© Harald Räcke 277/295

Let for a multicommodity flow problem P Copt(P) be the

optimum congestion, and Dopt(P) be the optimum dilation (by

perhaps different flow solutions).

Lemma 81

There is an oblivious routing scheme for the mesh that obtains a

flow solution S with C(S) = O(Copt(P) logn) and

D(S) = O(Dopt(P)).

PA 11 Some Networks

© Harald Räcke 277/295

Lemma 82

For any oblivious routing scheme on the mesh there is a demand

P such that routing P will give congestion Ω(logn · Copt).

PA 11 Some Networks

© Harald Räcke 278/295

In the following we design oblivious algorithms that obtain close

to optimum congestion (no bounds on dilation).

We always assume that we route a flow (instead of packet

routing).

We can also assume this is a randomized path-selection scheme

that guarantees that the expected load on an edge is close to the

optimum congestion.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 279/295

Hierarchical Decompositions

x

rx x

x x x z x x

Hierarchical Decompositions & Oblivious Routing

define multicommodity flow problem for every cluster:

ñ every border edge of a sub-cluster injects one unit and

distributes it evenly to all others

Formally

ñ cluster S partitioned into clusters S1, . . . , S`
ñ weight wS(v) of node v is total capacity of edges

connecting v to nodes in other sub-clusters or outside of S
ñ demand for pair (x,y) ∈ S × S

wS(x)wS(y)
wS(S)

ñ gives flow problem for every cluster

ñ if every flow problem can be solved with congestion C then

there is an oblivious routing scheme that always obtains

congestion

O(height(T) · C · Copt(P))

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 282/295

Oblivious Routing Scheme

x

rx x

x x x z x x

Oblivious Routing Scheme

x

rx x

x x x z x x

Oblivious Routing Scheme

x

rx x

x x x z x x

Oblivious Routing Scheme

x

rx x

x x x z x x

Oblivious Routing Scheme

x

rx x

x x x z x x

Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Sparsest Cut

Definition 83

Given a multicommodity flow problem P with demands Di
between source-target pairs si, ti. A sparsest cut for P is a set S
that minimizes

Φ(S) = capacity(S, V \ S)
demand(S, V \ S) .

demand(S, V \ S) is the demand that crosses cut S.

capacity(S, V \ S) is the capacity across the cut.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 285/295

Sparsest Cut

Clearly,

1/Φmin ≤ Copt(P)

For single-commodity flows we have 1/Φmin = Copt(P).

In general we have

1
Φmin

≤ Copt(P) ≤ O(logn) · 1
Φmin

.

This is known as an approximate maxflow mincut theorem.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 286/295

Sparsest Cut

Clearly,

1/Φmin ≤ Copt(P)

For single-commodity flows we have 1/Φmin = Copt(P).

In general we have

1
Φmin

≤ Copt(P) ≤ O(logn) · 1
Φmin

.

This is known as an approximate maxflow mincut theorem.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 286/295

Sparsest Cut

Clearly,

1/Φmin ≤ Copt(P)

For single-commodity flows we have 1/Φmin = Copt(P).

In general we have

1
Φmin

≤ Copt(P) ≤ O(logn) · 1
Φmin

.

This is known as an approximate maxflow mincut theorem.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 286/295

LP Formulation

Maximum Concurrent Flow:

max λ
s.t. ∀i ∑

p∈Psi,ti fp ≥ Di
∀e ∈ E ∑

p:e∈p fp ≤ c(e)
fp, λ ≥ 0

Ps,t is the set of path that connect s and t.

The Dual:
min

∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 287/295

LP Formulation

Maximum Concurrent Flow:

max λ
s.t. ∀i ∑

p∈Psi,ti fp ≥ Di
∀e ∈ E ∑

p:e∈p fp ≤ c(e)
fp, λ ≥ 0

Ps,t is the set of path that connect s and t.

The Dual:

min
∑
e c(e)`(e)

s.t. ∀p ∈ P ∑
e∈P `(e) ≥ disti∑
iDidisti ≥ 1

disti, `(e) ≥ 0

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 287/295

LP Formulation

Maximum Concurrent Flow:

max λ
s.t. ∀i ∑

p∈Psi,ti fp ≥ Di
∀e ∈ E ∑

p:e∈p fp ≤ c(e)
fp, λ ≥ 0

Ps,t is the set of path that connect s and t.

The Dual:
min

∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 287/295

Duality

Primal:
max ctx
s.t. Ax ≤ b

x ≥ 0

Dual:
min bty
s.t. Aty ≥ c

y ≥ 0

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 288/295

Metric Embeddings

Definition 84

A metric (V ,d) is an `1-embeddable metric if there exists a

function f : V → Rm for some m such that

d(u,v) = ‖f(u)− f(v)‖1

Definition 85

A metric (V ,d) embeds into `1 with distortion α if there exists a

function f : V → Rm for some m such that

1
α
‖f(u)− f(v)‖1 ≤ d(u,v) ≤ ‖f(u)− f(v)‖

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 289/295

Metric Embeddings

Definition 84

A metric (V ,d) is an `1-embeddable metric if there exists a

function f : V → Rm for some m such that

d(u,v) = ‖f(u)− f(v)‖1

Definition 85

A metric (V ,d) embeds into `1 with distortion α if there exists a

function f : V → Rm for some m such that

1
α
‖f(u)− f(v)‖1 ≤ d(u,v) ≤ ‖f(u)− f(v)‖

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 289/295

Theorem 86

Any metric (V ,d) on |V | = n points is embeddable into `1 with

distortion O(logn).

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 290/295

Theorem 87

For any flow problem P one can obtain at least a throughput of

Φmin/ logn, where Φmin denotes the sparsity of the sparsest cut.

In other words

Copt(P) ≤ O(logn)
1
Φmin

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 291/295

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P)

=
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)

= α · 1
Φmin

LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin

Fréchet Embedding

Given a set A of points we define a mapping

f(x) := d(x,A)

The mapping f is contracting this means

‖f(x)− f(y)‖ ≤ d(x,y)

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 293/295

Fréchet Embedding

Given a set A of points we define a mapping

f(x) := d(x,A)

The mapping f is contracting this means

‖f(x)− f(y)‖ ≤ d(x,y)

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 293/295

Suppose we have a probability distribution p over sets

A1, . . . , Ak:

Then define f : V → Rk by

f(x)i : V = p(Ai) · d(x,Ai)

f is still contracting.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 294/295

Suppose we have a probability distribution p over sets

A1, . . . , Ak:

Then define f : V → Rk by

f(x)i : V = p(Ai) · d(x,Ai)

f is still contracting.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 294/295

Suppose we have a probability distribution p over sets

A1, . . . , Ak:

Then define f : V → Rk by

f(x)i : V = p(Ai) · d(x,Ai)

f is still contracting.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 294/295

We use a probability distribution over sets such that the

expected distance between x and y is at least

d(x,y)/O(logn)

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 295/295

	PRAM Algorithms
	Basic Algorithms
	Prefix Sum
	Parallel Prefix
	Divide & Conquer — Merging
	Maximum Computation
	Inserting into a (2,3)-tree
	Symmetry Breaking

	List Ranking
	Tree Algorithms
	Searching and Sorting
	Sorting Networks
	Lower Bounds
	Simulations between PRAMs
	Some Networks
	Oblivious Routing via Hierarchical Decompositions

