
7.5 (a, b)-trees

Definition 1

For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most

b children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS

© Ernst Mayr, Harald Räcke 192

7.5 (a, b)-trees

Each internal node v with d(v) children stores d− 1 keys

k1, . . . , kd − 1. The i-th subtree of v fulfills

ki−1 < key in i-th sub-tree ≤ ki ,

where we use k0 = −∞ and kd = ∞.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 193

7.5 (a, b)-trees

Example 2

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 194

7.5 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; it only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as

opposed to 1/2-full (the requirement of a B-tree).

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 195



Lemma 3

Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh

2. logb(n+ 1) ≤ h ≤ 1+ loga(
n+1

2 )

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and,

hence, the number of leaf nodes at most bh.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 196

Search

Search(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 197

Search

Search(19)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞19

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 197

Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node

v on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 198



Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 199

Insert

Insert(7)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 200

Insert

Insert(7)

1

1 3

5 6 7 8

5 6 7 8 10

14 28

3 10 19

14 19 28 ∞7

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 200

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 6 10 19

14 19 28 ∞

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 200



Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 10 19

6

14 19 28 ∞

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 200

Delete

Delete element x (pointer to leaf vertex):

ñ Let v denote the parent of x. If key[x] is contained in v,

remove the key from v, and delete the leaf vertex.

ñ Otherwise delete the key of the predecessor of x from v;

delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it

appears in exactly one internal vertex).

ñ If now the number of keys in v is below a− 1 perform

Rebalance′(v).

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 201

Delete

Rebalance′(v):
ñ If there is a neighbour of v that has at least a keys take

over the largest (if right neighbor) or smallest (if left

neighbour) and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1

keys, and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this

case the root is deleted and the height of the tree decreases.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 202

Delete

Animation for deleting in an

(a, b)-tree is only available in the

lecture version of the slides.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 203



(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

1 3 4 5 8 11 13 17 18 19 20 22 25 27 41 43 47 ∞

First make it into an internal search tree by
moving the satellite-data from the leaves to
internal nodes. Add dummy leaves.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 204

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Then, color one key in each internal node v
black. If v contains 3 keys you need to select
the middle key otherwise choose a black key
arbitrarily. The other keys are colored red.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 204

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Re-attach the pointers to individual keys. A
pointer that is between two keys is attached as
a child of the red key. The incoming pointer,
points to the black key.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 204

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1

3 5

11

13

18

19 22 27

43

47

17

4

8

20

25

41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 204



Augmenting Data Structures

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

A description of B-trees (a specific variant of (a, b)-trees) can be found in Chapter 18 of [CLRS90].
Chapter 7.2 of [MS08] discusses (a, b)-trees as discussed in the lecture.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 205


	(a,b)-trees

