6.3 The Characteristic Polynomial

Consider the recurrence relation:

coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

Approach:
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:

» First determine all solutions that satisfy recurrence relation.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
» First consider the homogenous case.
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The Homogenous Case

The solution space

S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space.

© Ernst Mayr, Harald Réacke
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens.
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

COAn+C1An_1 +Cp - An—Z + e+ An—k =0

for all n > k.
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + AR e AR 2 =0
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

characteristic polynomial P[A]
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = ?\’i‘
is a solution to the recurrence relation.
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A’f
is a solution to the recurrence relation.

Let Aq,..., Ak be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
XA + ALY + -+ oAy

is a solution for arbitrary values «j.
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The Homogenous Case

Lemma 1
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of

the form
0(1?\1l + 0(2?\51 + -+ O(k)\? .
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The Homogenous Case

Lemma 1
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(1?\1l + 0(2?\5l + -+ O(k)\;;l .

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],...,T[k].
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The Homogenous Case

Lemma 1
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(1?\1l + 0(2?\5l + -+ O(k?\;;l .

Proof.
There is one solution for every possible choice of boundary

conditions for T[1],...,T[k].

We show that the above set of solutions contains one solution
for every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

X1-A1 + o02-A2 + -+ XAy = TI[1]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

xp-A1 + o2 A2 + -+ Ay = T[1]
o A2+ AR+ e+ oA = T[2]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

xp-A1 + o2 A2 + -+ Ay = T[1]
o A2+ AR+ e+ oA = T[2]
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The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

o1 -A1 + o2-Ar + + ox-Ar = TI[1]
o -A2 + o-Ad + oo AL = T[2]
o AN+ - A 4 + ox - AN = Tk]
.
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The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the (xgs such that these conditions are met:

Al A e A o T[1]
AT A3 - A2 o2 T[2]
Ak oAk o Ak o T[k]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the cx;s such that these conditions are met:

Al A e A o T[1]
AT A3 - A2 o | | TI2]
Ak oAk o Ak o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.
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At Az e Apo
ALAS e AR

Ak
A

T

EADS
© Ernst Mayr, Harald Réacke
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A1
A7

A
A

2
2
2

Ak—1 Ak 1 1
AZ, ARk AL A
Sl =1TA
: i=1
AL AR ARt agt

k-1

AyZ

T

EADS

6.3 The Characteristic Polynomial
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A1 Ar oo Arl1 Ak 1 1

AT A3 - AD, ARk AL A
. . =112
: i=1
Ak Ak Ak Ak AL Akt
1A
k 1 A2
=[] )
i=1 :
1 Ag

k-2
A1

Ak

A
A

A

AR

-1
-1

k-1

k-1
2

k-1
k

Ak

A

k-1
k

6.3 The Characteristic Polynomial
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Computing the Determinant

1 A Ak=2
1 A Ak-2
1 A --- )\115*2
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Computing the Determinant

T

1 A Ak=2 pkt
1 A A=z Akt
1 Ak A2 Akt
1 Ap—-Ap-1 - A’f‘z—Al-/\ﬁ"? Alf_l—Al-Alf_Z
I Ao—=Ap-1 --- AK2oap a7 Akt oAy a2
IoAg=Ap-1 - A2 aklboag Ak
EADS 6.3 The Characteristic Polynomial =) = E
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Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2
I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2
Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
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Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2

I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2

Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
1 0 0 0
1 (A=A)-1 -+ (A2=A)-A53 (A —2Ay)-A52
1 A=AD-1 -+ A=A - A% (A —2Ap) - Af?
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Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?
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Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?

. T - AFT AR
[TAi=2a0) - : :
= S L
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Computing the Determinant

Repeating the above steps gives:

A1 A e Apor Ag

AZ A% ... A2 A2

Lo SELEY I b PV i P VO V'
.k .k k. .k i=1 i>f

AT A2 e Ay Ay

Hence, if all A;’s are different, then the determinant is hon-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

To see this consider the polynomial

PIA] - A" K = oA + i A" L4 A2 4 o Ak
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

To see this consider the polynomial
PIAT- A" K = oA + )AL 4 A" 2 4 - AR

Since A; is a root we can write this as Q[A] - (A — A;)2.
Calculating the derivative gives a polynomial that still has root
Aj.
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This means

C01’l2\?71 +c1(n— 1)A?’2 + 4 op(n— k))\?—k—l =0

T
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This means

C()Tl?qkl +c1(n— I)A?’Z + 4 op(n— k)}\?_k_l =0

Hence,

Co’l’l)\? +c1(n— 1))\71.1_1 + o tegn-— k)A?_k -0

T
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This means
C()Tl?qkl +c1(n— I)A?’Z + 4 op(n— k)}\?_k_l =0
Hence,

Co’l’l)\? +c1(n— 1))\71.1_1 + o tegn-— k)A?_k -0
— —_— [ —"
T[n] T[n-1] Tin-k]
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The Homogeneous Case

Suppose A; has multiplicity j.
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The Homogeneous Case

Suppose A; has multiplicity j. We know that
COTL?\? +c1(n— 1))\?‘1 + o teg(n— k)Ni’l—k -0

(after taking the derivative; multiplying with A; plugging in A;)
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(n—1D2AM 4+t gm-Kk)2AR =0
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®Af +ci(m—1D2AM 4+ g n-k)2AT k=0

We can continue j — 1 times.
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

C0n22\7i1 +c1(n— 1)22\?71 + it ox(n - k)ZA?_k =0

We can continue j — 1 times.

Hence, ny)\? is a solution for£ €0,...,j — 1.
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The Homogeneous Case

Lemma 2
Let P[A] denote the characteristic polynomial to the recurrence

coT[n]+ciT[n—1]1+---+cxT[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities ;. Then the general solution to the recurrence is

given by
£i-1

m vt
= Z Z - (nIA})

i=1 j=0

The full proof is omitted. We have only shown that any choice of
«;ij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]1=1
TInl=Tn-1]1+T[n-2]forn=2
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Example: Fibonacci Sequence

T[0]=0
T[1]1=1
TInl=Tn-1]1+T[n-2]forn=2

The characteristic polynomial is

AZ_A-1
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Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tn]l=Tn-11+Tn-2]forn=2

The characteristic polynomial is
A2-A-1

Finding the roots, gives
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Example: Fibonacci Sequence

Hence, the solution is of the form

(5 (15

;
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Example: Fibonacci Sequence

Hence, the solution is of the form

(5 (15

T[0] =0 gives x+ S =0.

;
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Example: Fibonacci Sequence

Hence, the solution is of the form

ORI

2 2

T[0] =0 gives x+ S =0.

T[1] =1 gives

(CONCOR

:
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Example: Fibonacci Sequence

Hence, the solution is of the form

(7)o ()

2 2

T[0] =0 gives x+ S =0.

T[1] =1 gives

a(1+2ﬁ)+,8(1_2ﬁ)=1:>(x—3=

Gl

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke



Example: Fibonacci Sequence

Hence, the solution is

1 [/(1+\" (1-5
/5 2 B 2

)]
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The Inhomogeneous Case

Consider the recurrence relation:
coTm)+ciTm—1)+c2Tm—-2)+---+cxT(n—k) = f(n)
with f(n) + 0.

While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Tp(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Tp(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:
Tnl=Tn-11+1

T[0]=1
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The Inhomogeneous Case

Example:
Tnl=Tn-11+1

Then,
Tn-1]1=Tn-2]+1

T[0]=1

(n=2)
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The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,

Tn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke



The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tn]-Tn-1]=T[n-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)
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The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tn]-Tn-1]=T[n-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-20+1=0
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
\—(_J
(A-1)2
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
\—(_J
(A-1)2

Then the solution is of the form

Tn]l=axl"+pnl1" =+ Bn
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2_22+1=0
\—(_J
(A-1)2

Then the solution is of the form
Tn]l=axl"+pnl1" =+ Bn

T[0] =1 gives x = 1.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2_22+1=0
_(—J
(A-1)2

Then the solution is of the form
Tn]l=axl"+pnl1" =+ Bn
T[0] =1 gives x = 1.

T[l]=2givesl1+B=2= f=1.
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-2]1+(n-1)>2
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-T[n-2]+2n-1
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-T[n-2]+2n-1

Tnl=2Tn-11-Tn-2]1+2n-1
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Tn]l=2Tn-1]1-T[n-2]+2n-1

T

EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke



Tn]l=2Tn-1]1-T[n-2]+2n-1

Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1

T
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Tn]l=2Tn-1]1-T[n-2]+2n-1

Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

T
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Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3
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Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

Tn]=3Tn-1]1-3T[n-2]+T[n-3]+2
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Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

Tn]=3Tn-1]1-3T[n-2]+T[n-3]+2

and so on...
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