6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(n)+caiTm—-1)+c2T(m—-2)+---+cxT(m—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1]1,...,T[k].

> In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.
» Then pick the right one by analyzing boundary conditions.

» First consider the homogenous case.
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 77,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A = 0, and see what
happens. In order for this guess to fulfill the recurrence we need

CoAn+C1An_1 + C2 _An—Z + -+ Ck - An_k =0

for all n > k.
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The Homogenous Case

Dividing by A"~¥ gives that all these constraints are identical to

A B N O L A Y A=

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = 2\?
is a solution to the recurrence relation.

Let Aq,...,Ax be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
X1AY + 0AY + -+ oAy

is a solution for arbitrary values «;.
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The Homogenous Case

Lemma 1
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(12\? + 0(22\121 + -+ O(k)\}: .

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution
for every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the s such that these conditions are met:

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the 0(;5 such that these conditions are met:

Al Ay - Ak X1 T[1]
ATOAZ e AR o | | TI2]
Ak Ak Ak ok T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.
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XAl + o2-A2 + -+ 4+ XA = T[1]
oA+ oAl + e+ o AR = T[2]
k k k  _
(Xl-)\l + 0(2-2\2 + e+ O(k-)\k = TI[k]
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Al A o Ao Ax 1 1 1 1
A2 A2 ... AL, AZ| Kk ALoA e A A
. l=1TA : : .
. . . . i=1 . . . :
k k k k k-1 k-1 k-1 k-1
A1 A2 o Ak—l )\k )\1 )\2 T Ak—l Ak
k-2 k-1
1 A] R Al Al
k 1 A - AK2 Akl
=[Jai-]. . . .
i=1 .
-2 -1
1 A Ak=2 Ak
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Computing the Determinant

Computing the Determinant

A e A2 Akd
I Ay --- Ak2 Akt
1A --- AKZ AkL
I oAy —=Ap-1 e AMZoapaal Ak A k2
I Ao—=Ap-1 -« Ab2apab 7 Ak oA Ak
ToAg=Ar-1 oo AP 2=Ap-A0 0 AR - af?
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Computing the Determinant
1 0 0 0
I (A2—=Ap)-1 (A2 = A1) - A5 (A —Ap)-A5?
1 (Ax—=2Ap)-1 A=A - A A=Ay -Ap?
. I Ao -0 Ak Ak2
[T@i=a1) - : : :
=2 1 A -ee AR Ak-2
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1 A—A;-1 P VD Lt B Lt SR\ Lt
1 A2-A;-1 AS2o A A5T3 ABT oA A2
1 A—=2Ap-1 LA PR LAt S Lat e P L
1 0 0 0
1 A2—-2p)-1 Az =A1)-A53 (A —Ap)-Af2
1 (Ax—Ap)-1 (Ak_Al)')\§73 (?\k—?h)-?\fz
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Computing the Determinant
Repeating the above steps gives:
A1 Az s A1 Ag
NN A Nk
. i l=TTAa- TTi=2ap)
.k -k k -k i=1 i>f
AT Ay e A A
Hence, if all A;’s are different, then the determinant is non-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is AT" a solution to the recurrence but also nA?".

To see this consider the polynomial
PIAT - A" K = oA 4+ A L 4 A2 4 oo Ak

Since A; is a root we can write this as Q[A] - (A — A;)2.
Calculating the derivative gives a polynomial that still has root
A.
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This means
con/\?_l +c1(n— 1)2\17.1—2 +top(n— k))\?fkfl -0
Hence,

CO?’l?\? +c1(n— 1))\?71 4+t op(n— k)?\?fk =0

T[n] T[n-1] T[n-k]
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA" +ci(n— DAV L+ r g - kAT K =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

Conzi\? +c1(n— 1)22\71,1_1 +-+cx(n-— k)ZA?_k -0

We can continue j — 1 times.

Hence, n’/)Al” is a solution for £ €0,...,j — 1.
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The Homogeneous Case

Lemma 2
Let P[A] denote the characteristic polynomial to the recurrence

coTn]+aTn—-11+---+cxT[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities €;. Then the general solution to the recurrence is
given by

m i1

Tn] = Z Z oj - (nj)\?) .

i=1 j=0

The full proof is omitted. We have only shown that any choice of
«;;’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]1=1
Tnl=Tn-11+T[n-2]forn =2

The characteristic polynomial is
|

Finding the roots, gives

)\1/2=%i,/%+1=%(1i\/§>
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Example: Fibonacci Sequence
Hence, the solution is of the form
n n
«(157) o (57)

T[0] =0 gives x+ B = 0.

T[1] =1 gives

0(<1+2£)+B(1_2\/§>=1=>(x—[3:2
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Example: Fibonacci Sequence

Hence, the solution is

ACURCEN
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The Inhomogeneous Case

Consider the recurrence relation:

coT(n)+caiTm—-1)+c2T(n—2)+---+cxT(m—k) =f(n)

with f(n) = 0.

While we have a fairly general technique for solving

homogeneous, linear recurrence relations the inhomogeneous

case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Tr(n) +Tp(n) ,

where Ty, is any solution to the homogeneous equation, and Tj
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:
Tn]l=Tn-1]+1 T[0] =1

Then,
Tn-11=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tnl-Tn-1]1=T[n-1]1-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] =1 and
T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
—_—
(A-1)2

Then the solution is of the form
T[n] = 1™+ Bnl1" = x + Bn
T[0] =1 gives x = 1.

T[1]=2gives1+B=2= B =1.

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Racke 89

The Inhomogeneous Case

If f(n) is a polynomial of degree 7 this method can be applied
¥ + 1 times to obtain a homogeneous equation:

T[n]=T[n- 1]+ n?
Shift:

TIn-11=Tn-2]+n-1)2=Tn-2]+n?>-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-Tn-2]+2n-1

Tn]=2Tn-1]-Tn-2]+2n-1
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Tn]=2Tn-1]-Tn-2]+2n-1
Shift:

Tn-1]1=2Tn-2]-Tn-3]+2(n—-1) -1
=2Tn-2]-T[n-3]+2n-3

Difference:

Tn]-Tn-1]1=2T[n-1]-T[n-2]+2n-1
-2Tn-21+Tn-3]1-2n+3

Tn]=3Tn-1]-3T[n-2]1+T[n-3]+2

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Racke

91




	The Characteristic Polynomial

