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Let |L,| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).
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How can we improve the search-operation?

Add an express lane:

Let |L;| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

Worst case search time: |Li| + |L (|gnor|ng additive constants)

Choose |L1| = /n. Then search time ©(\/n).
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Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_1.

Search(x) (k + 1 lists Lg,...,Lg)

>

Find the largest item in list Ly that is smaller than x. At
most |Ly| + 2 steps.

Find the largest item in list Ly_; that is smaller than x. At

Ly
most [llLflill] + 2 steps.

Find the largest item in list Ly_» that is smaller than x. At

[Lg—2|
most [ F 5] + 2 steps.

Li
L;

At most |Li| + Zli<=1 L+ 3(k + 1) steps.

T
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Choose ratios between list-lengths evenly, i.e., 'Lli‘i‘ll =7, and,

hence, Ly ~ v *n.
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hence, Ly ~ v *n.

Worst case running time is: O(r *n + kr).
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=7, and,

il

hence, Ly ~ v *n.

Worst case running time is: O(r *n + kr).
1
Choose ¥ = n&+1. Then

Kk 1k 1
r *n+kr = (nkﬂ) n + knwx
k 1
=nl"%&1 + knrea
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Choose ratios between list-lengths evenly, i.e., 'L‘i‘,‘ll

1

=7, and,
hence, Ly ~ v *n.

Worst case running time is: O(r *n + kr).
1
Choose ¥ = n&+1. Then

1 1
kn + kr = (nm) n+ knet

-
k 1
=nl"%&1 + knrea
1
=(k+1)nkt |

Choosing k = ©(logn) gives a logarithmic running time.
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How to do insert and delete?

» If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require
a lot of re-organisation.
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7.6 Skip Lists

How to do insert and delete?

» If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require
a lot of re-organisation.

Use randomization instead!
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Insert:
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7.6 Skip Lists

Insert:

» A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {1,2,...} of trials needed.

» Insert x into lists Lo,...,L¢—1.

Delete:

> You get all predecessors via backward pointers.

» Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.
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High Probability

Definition 1 (High Probability)
We say a randomized algorithm has running time @ (logn) with

high probability if for any constant « the running time is at most

O(logn) with probability at least 1 — 1

n«
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High Probability

Definition 1 (High Probability)

We say a randomized algorithm has running time @ (logn) with
high probability if for any constant « the running time is at most
O(logn) with probability at least 1 — 1

n«

Here the O-notation hides a constant that may depend on «.
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High Probability

Suppose there are a polynomially many events E1, E», ..., Ep,
{ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).
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Pr(Ey A--- AEpl=1-Pr[Ey Vv ---VEy]

>1-n°-n«

m EADS 7.6 Skip Lists =]
© Ernst Mayr, Harald Réacke



High Probability

Suppose there are a polynomially many events E1, E», ..., Ep,
{ = n¢ each holding with high probability (e.g. E; may be the
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High Probability

Suppose there are a polynomially many events E1, E», ..., Ep,
{ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A--- AEpl=1-Pr[Ey Vv ---VEy]
>1-nc-n*¢

=1-n¢

This means Pr[E; A - - - A Ep] holds with high probability.
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7.6 Skip Lists

Lemma 2
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).
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Backward analysis:
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Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.
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Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

> A “long” search path must also go very high.
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We show that w.h.p:

> A “long” search path must also go very high.
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7.6 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.
We show that w.h.p:

> A “long” search path must also go very high.

» There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
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Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above L.
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7.6 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above L.

In particular, this means that during the construction in the
backward analysis we see at most k heads (i.e., coin flips that
tell you to go up) in z trials.
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Pr[E; k] < Pr[at most k heads in z trials]
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Pr[E; k] < Pr[at most k heads in z trials]

Z)5-(z-k)
< (k)Z
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So far we fixed k = ylogn, y > 1,and z = 7aylogn, o = 1.
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This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.
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For the search to take at least z = 7y log n steps either the
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This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ag,1 denote the event that the list Ly, is non-empty. Then
Pr(A. ] < n2- kD < n=Or=1

For the search to take at least z = 7y log n steps either the
event E; x or the even Ay,1 must hold.
Hence,
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Let Ag,1 denote the event that the list Ly, is non-empty. Then
Pr(A. ] < n2- kD < n=Or=1
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So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ag,1 denote the event that the list Ly, is non-empty. Then
Pr(A. ] < n2- kD < n=Or=1

For the search to take at least z = 7y log n steps either the
event E; x or the even Ay,1 must hold.
Hence,

Pr[search requires z steps] < Pr[E; ] + Pr[Ax,11]

<n %4pn b

This means, the search requires at most z steps, w. h. p.
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