Baseball Elimination

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M w_{\chi}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team *z* is not eliminated.

	13.2 Baseball Elimination	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		482

<section-header><section-header><section-header><section-header><section-header><image>

Project Selection

Project selection problem:

- Set *P* of possible projects. Project *v* has an associated profit *p_v* (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ► A subset *A* of projects is feasible if the prerequisites of every project in *A* also belong to *A*.

Goal: Find a feasible set of projects that maximizes the profit.

EADS © Ernst Mayr, Harald Räcke	13.3 Project Selection	
UUU©Ernst Mayr, Harald Räcke		483

Project Selection

484

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity pv for nodes v with positive profit.
- Create edge (v, t) with capacity -pv for nodes v with negative profit.

Theorem 2

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

► *A* is feasible because of capacity infinity edges.

