6.2 Master Theorem

Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence n

T(n) = aT(E) + f(n) .

Case 1.
If f(n) = O(n'°8(@=€) then T(n) = O(nlogra),

Case 2.
If f(n) = (N8 @ 1ogk n) then T(n) = O ('8 21ogk* 1 n),
k=0.

Case 3.
If f(n) = Q(nl°8@+€) and for sufficiently large n

af(%) < cf(n) for some constant c <1 then T(n) = O(f(n)).

TN een ’
© Ernst Mayr, Harald Réacke

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

®

m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

=
g

@
1

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

@
1

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

6.2 Master Theorem

This gives
log, n—1

T(n) =nl&a 4 3 a%(%))

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

T(n) _ nlogb a

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1

T -l =3 aif(r)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1

T -l =3 aif(r)

i=0
log, n—1

¢ 3 ai

i=0

IA

n

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,
log, n—-1 n
T(n) -nlo&rd = alf<ﬁ>
i=0
log, n—1

logy, a—€
(n
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogh u)—i = peig—i |

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — Cnlogb a—e Z (be)l

i=0

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — Cnlogb a—e Z (be)l

i=0

k+1,1
zl Oq q-1

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0
logy n-1 logy, a—e
<cC a bi
i=0
log, n—1]
p-ilogpa—€) _ pei(plogpay—i — peig—i I — cnlogb a—e Z (be)l
i=0
gktl-1 | _ log, a—€ belogbn -1) bE -1
Stoai=4t|=cn (/()

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — cnlogb a—e Z (be)l

i=0

Zl oq ’:1;1 _ cnlogba—E(belogbn _ 1)/(be -1)
= cnlo8a€(n€ —1)/(b° - 1)

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

T(n) —

-

i(logy a—e)

— bei(blogb u)—i

zl ()q

T

EADS

© Ernst Mayr,

Harald Racke

log, n—-1 n
e a3
i=0
logy n-1 logy, a—e
<cC a bi
i=0
log, n—1]
- peia-i| = cnloBra=c N (p€)!
i=0
’:1;1 _ cnlogb a—E(beloghn _ 1)/(be -1)
= cnlo8ra=€(n€ — 1)/ (b - 1)
¢ logy, a(.,€ €
= b —
e_1" (n®-1)/(n%)
6.2 Master Theorem =) =

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0
log, n—1 log, a—e
<cC a bi
i=0
log, n—1
— _ . i P log, a—¢ €\l
p—illogy a—e) :ba(blogba) Lo peig-i| = cn b Z (b)
i=0
gftl-1 | _ log, a—€ beloghn -1) bE -1
Stoai=4t|=cn (/()
= cnlo8ra=€(pc _ 1)/(b€ - 1)
¢ logy, a(.,€ €
= b —
e_1" (n®-1)/(n%)
Hence,
T(n) < (+ 1>nl°gh(“)
be -1
EADS 6.2 Master Theorem =) = =

T

© Ernst Mayr,

Harald Racke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—1 n
T -l =3 aif(r)
i=0
logyn-1 1\ logya—e
se 3 al(y)
i=0
log, n—1]
b—i(logha—e):bei(blogbu)—i:beia—i :cnIOgba_e Z (be)l
i=0

Zl 0‘1 i O cnlogba—E(beloghn _ 1)/(be -1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n9)

Hence,

T(n) < (+ 1>n1°gh(“) > T(n) = O(n'osra).

be -1

‘m EADS 6.2 Master Theorem =] = =
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

T(n) - nlogb a

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—-1

T(n) — nlogra = Z aif(%)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—-1 n
_ logpa _ i hid
T(n)—nosrd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a (bi>
i=0

IA

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
'LE 8b
<c > a i
i=0
log, n—1
=cnlogra X
i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: (n logy, a
[a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: (n logy, a
[a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

Hence,
T(n) = O(n'°% *log, n)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: in log, a
C a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

Hence,

T(n) = 08 log,n) |= T(n) = O(n'8<logn).

‘m EADS 6.2 Master Theorem =] = =
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

T(n) - nlogb a

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nosra = z af(bi)
i=0
log, n—-1

log, a
i n
2 i
=C a (bi>
i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Sh
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

Hence,
T(n) = Q(n'°8 %log, n)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

Hence,

T(n) = Q(n'°8 %log, n) ‘=> T(n) = Q(n%8 2]ogn).

‘m EADS 6.2 Master Theorem =] = =
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

T(n) — nlogra

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1

T(n) - nloma= Y av(%)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.
logp n—1 n
o) —nlowd =3 aif (1)
i=0
log, n—1 logy a
(n n
sc 3 a(g) (o (5

i=0

)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 ’ n
1=

IA
9}
&H
—
e
N——
S
')
=
Q
—
o
o
o
N
—
=
2
~—
N———
~

n:h#=>€:logbn|

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1

T(n)-nlo&a =% aif(ﬁ)

i=0
log, a n k
) (o (53)
£-1

log, n—1
b\ K
n:h#=>€:logbn| = cnlosr @ Z (logb (ﬁ))

<c > ai<
i=0

=

i=0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 n
o) —nlowd =3 aif (1)
i=0
loghn—1' logy a
SIS () (o

i=0

- bl \ K
n:hyjﬁzlogbn‘ =C1’Llogbaz (logb<))

= cnlogra i 0 - i)k

i=0

bl

7))

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

n
(4)

n logy a n k
@(5r) " (1om (7))

b\ K
n:hgjﬁzlogbn‘ = cnlogr @ (logb (*))

logp n—1

T(n)-nl®a =% gif
i=0

log, n—-1

IA
o

|
o
:»—-
o
(=]
Ny
IS}
™MT
T
~~
S
|
o~
p—
3

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

n
(4)

n logy a n k
a(5) - (1o (57))

-1 b\ K
n:h”:E:logbn‘ = cnlosra Z (logb (ﬁ))
i=0

£-1
Cnlogba Z (_g _ l)k

i=0

logp n—1

T(n)-nl®a =% gif

IA
o

= Cnl()gb a ik |~ %#kﬂ

H.
LM s i
~

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 ’ n
T(n)-nlo&a =% alf(ﬁ)

i=0

IA
o
&N
—
=
~—
5
=)
S
N
—
(]
o
o
N
—
&
=
~—
N~
~

-1 btk
n:hgjﬁzlogbn‘ = cnlogr @ (logb (*))

|
o
S
—
o
[
=
S
—
S
I
-~
~
=~

= cnlogra Z ik
i=1
%nlogh u€k+1

u

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 n
_ ,logya _ i Rid
T(n)-nlogra = % af(bi)
i=0
log, n—1

S) (1)

i=0

- pi\\ K
n:hgjﬁzlogbn‘ = cnlosr @ Z (logb())
i=0

£-1
_ Cnlogba Z(’E—l)k

i=0
4
= cnlogra Z ik
i=1
c
~ nlogh u€k+1

= T(n)

= O(n'osr 4 1ogk 1 n).

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) <cf(n), forc < 1.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1

Ton) —nloswd =3 aif ()

i=0

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
Ton) —nloswd =3 aif ()
i=0
log, n—-1
< > cfm) +ome
i=0

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
_ plogya _ ig(N
T(n)—nosr = Z “f<bi>
i=0
log, n—-1
i logy, a
< c'f(n) + O(m°8r %)
i=0
7’ _gn+l
q<1:zl”=0qlzllq_q sﬁ

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
Ton) —nloswd =3 aif ()
i=0
log, n—-1
< > cifm) +0mnosna)
i=0
n i 1= n+1 1
a<1:3%,q" = llq_q < ﬁ Sl _Cf(n) + O(n'o8r)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1

L (n
T(n) —nlogra = Z alf<ﬁ>
i=0
log, n—-1
< > cifm) +0mnosna)
i=0
n i _an+1]- l
a<1:3%,q' = llq_q < ﬁ Sl _Cf(n) + O (n'°sr)
Hence,

T(n) <0(f(n))

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1
=St
2 ar(y)
log, n—-1
< > cifn)+omond
i=0
q<1:zg‘=0qi:171q_nq+1 Sﬁ Slicf(n)—‘ro(nlogba)
Hence,
T(n) <0(f(n)) > T(n) = ®(f(n))_‘

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
10001001|1 B

L

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
1000100 1|1 B

o

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

1

o

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101[0]1 A
1000100(1/1 B
0/0

Cl

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

o000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
10001[0011 B
1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101{1jo101 A
1000(1/0011 B

' J1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{1{101 01 A
1000(1/00 11 B

01000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
jo1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
Joo1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
1001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
1100010011 B
/1001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
11000010011 B
11001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
/11001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
011001000

1

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
' Jo11001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
1011001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,9000100 11 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1
10001

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
100010

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

00

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010
00000O0O

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
00O

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
1T0001000O0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
1T0001000O0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B x| A

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b bo‘x‘an ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn b% b%_l bo‘x‘an a% a%_l ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

Hence,

A-B=AB-2"+ (A1Bo + AgBy) - 27 + Ao - Bo

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + 7 - 27 4 Zo

o(1)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

o(1)
O(1)

© Ernst Mayr, Harald Réacke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

o(1)
O(1)
On)

© Ernst Mayr, Harald Réacke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

© Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A,B;)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z - 2" + Z; - 27 VA4
6.2 Master Theorem =) =

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

© Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z - 2" + Z; - 27 VA4
6.2 Master Theorem =) =

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + Z; - 27 VA4

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8: return Z - 2" + Z; - 27 VA4

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |JA| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n
T(n) = 4T<§) +0n) .

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT

» Case 1: f(n) = O(nlo8ra-¢) T(n) =
= @(nlogr a]ogk+!
=0(f(n))

» Case 2: f(n) = O(nl°%21ogkn) T(n)
» Case 3: f(n) = Q(nlosra+e) T(n)

) + f(n).

(nlogb a)

n)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT)+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT)+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ®(n?) for our algorithm.

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT)+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ®(n?) for our algorithm.

= Not better then the “school method”.

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)
O(1)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)
O(1)
O(n)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =

T

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =

T

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Aog, By) T(%)
7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =

T

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)
T(%) +0(n)

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

O(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(%) +Om) .

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_

A huge improvement over the “school method”.

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

	Master Theorem

