6.2 Master Theorem

Lemma 1

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \; .$$

Case 1.

If
$$f(n) = O(n^{\log_b(a)-\epsilon})$$
 then $T(n) = O(n^{\log_b a})$.

Case 2.

If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$. We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:

n

6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆ □ ▶ < □ ▶ < □ ▶</p>
53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

f(n)

6.2 Master Theorem

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 53/609

6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) .$$

6.2 Master Theorem

◆ □ → < ≥ → < ≥ → 54/609

6.2 Master Theorem

◆日 → < 三 → < 三 → 55/609

$$T(n) - n^{\log_b a}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

◆日 → < 三 → < 三 → 55/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

 $b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\overline{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^\epsilon)^i$$
$$\overline{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 55/609

EADS

© Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k c n^{\log_b a-\epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)}$$

6.2 Master Theorem

EADS

© Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k c n^{\log_b a-\epsilon} (b^{\epsilon}\log_b n-1)/(b^{\epsilon}-1)}$$
$$= c n^{\log_b a-\epsilon} (n^{\epsilon}-1)/(b^{\epsilon}-1)$$

◆ 個 ▶ < E ▶ < E ▶</p>

6.2 Master Theorem

EADS

© Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} e^{i(\log_b a-\epsilon)}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{e^{n-1}} = c n^{\log_b a-\epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_b a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k (b^{\epsilon})^k (b^{\epsilon}-1)/(b^{\epsilon}-1)}$$

$$= c n^{\log_b a-\epsilon} (n^{\epsilon}-1)/(b^{\epsilon}-1)$$

$$= \frac{c}{b^{\epsilon}-1} n^{\log_b a} (n^{\epsilon}-1)/(n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log_b(a)}$$

6.2 Master Theorem

▲ 個 ▶ < 2 > < 2 > 55/609

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a-\epsilon}$$

$$\overline{b^{-i(\log_{b} a-\epsilon)} = b^{\epsilon i}(b^{\log_{b} a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_{b} a-\epsilon} \sum_{i=0}^{\log_{b} n-1} (b^{\epsilon})^{i}$$

$$\overline{\sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1}} = c n^{\log_{b} a-\epsilon} (b^{\epsilon} \log_{b} n - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_{b} a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_{b} a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log_b(a)} \qquad \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$

6.2 Master Theorem

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 55/609

6.2 Master Theorem

 $T(n) - n^{\log_b a}$

6.2 Master Theorem

▲ 個 ▶ < E ▶ < E ▶</p>
56/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

6.2 Master Theorem

◆ 週 ▶ 《 臣 ▶ 《 臣 ▶ 56/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$$

6.2 Master Theorem

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 56/609

6.2 Master Theorem

<日本 ● ● < 注 → < 注 → 57/609

 $T(n) - n^{\log_b a}$

6.2 Master Theorem

<日本 ● ● < 目 > < 目 > 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

◆ □ → < ≥ → < ≥ → 57/609
$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

6.2 Master Theorem

◆ □ → < ≥ → < ≥ → 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

◆ 週 ▶ ◆ 聖 ▶ ◆ 聖 ▶ 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$$

6.2 Master Theorem

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 57/609

6.2 Master Theorem

◆ 母 → ◆ 臣 → ◆ 臣 → 58/609

 $T(n) - n^{\log_b a}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

6.2 Master Theorem

◆ 母 → ◆ 臣 → ◆ 臣 → 58/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n=b^\ell \Rightarrow \ell = \log_b n$$

6.2 Master Theorem

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 58/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$
$$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$

6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$
$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$
$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k} \approx \frac{1}{k} \ell^{k+1}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$\approx \frac{c}{k} n^{\log_{b} a} \ell^{k+1}$$

6.2 Master Theorem

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 58/609

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b}\left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$\approx \frac{c}{k} n^{\log_{b} a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_{b} a} \log^{k+1} n).$$

6.2 Master Theorem

▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 58/609

6.2 Master Theorem

◆ 母 → ◆ 臣 → ◆ 臣 → 59/609

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$\boxed{q < 1 : \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}} \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$\underline{q < 1: \sum_{i=0}^n q^i = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}} \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

 $T(n) \leq \mathcal{O}(f(n))$

EADS			
© Ernst	Mayr,	Harald	Räcke

6.2 Master Theorem

◆ 個 ト < 注 ト < 注 ト 59/609

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$< 1 : \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \le \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

Hence,

q

$$T(n) \leq \mathcal{O}(f(n))$$
 $\Rightarrow T(n) = \Theta(f(n)).$

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

1 1 0 1 0 1 0 1 A 1 0 0 0 1 0 0 1 1 B

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

◆ □ ト < 三 ト < 三 ト 60/609

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

This gives that two *n*-bit integers can be added in time O(n).

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

 $1 \ 0 \ 0 \ 0 \ 1 \times 1 \ 0 \ 1 \ 1$

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1 0 0 0 1 × 1 0 1 1

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

_

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0

6.2 Master Theorem

_

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0

6.2 Master Theorem

_

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
							0	0	0

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0

6.2 Master Theorem

◆ 圖 ▶ < 置 ▶ < 置 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

6.2 Master Theorem

◆ 圖 ▶ < 置 ▶ < 置 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

6.2 Master Theorem

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

• Computing intermediate results: O(nm).

5000	EADS © Ernst Mayı		
	© Ernst Mayı	r, Harald	Räcke

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

- Computing intermediate results: O(nm).
- Adding *m* numbers of length $\leq 2n$:

 $\mathcal{O}((m+n)m) = \mathcal{O}(nm).$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$b_{n} \cdots b_{\frac{n}{2}} b_{\frac{n}{2}-1} \cdots b_{0} \times a_{n} \cdots a_{\frac{n}{2}} a_{\frac{n}{2}-1} \cdots a_{0}$$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$\begin{array}{|c|c|c|c|c|c|} B_1 & B_0 & \times & A_1 & A_0 \\ \hline \end{array}$$

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$\begin{array}{|c|c|c|c|c|c|} B_1 & B_0 & \times & A_1 & A_0 \\ \hline \end{array}$$

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

החוחר	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

6.2 Master Theorem

▲ @ ▶ ▲ 臺 ▶ ▲ 臺 ▶ 62/609

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 63/609

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

◆ ■ ト < 三 ト < 三 ト 63/609

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

6.2 Master Theorem

◆ 圖 ト < 圖 ト
 63/609

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + O(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

6.2 Master Theorem

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 63/609

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = O(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

We can use the following identity to compute Z_1 :

We can use the following identity to compute Z_1 :

 $Z_1 = A_1 B_0 + A_0 B_1$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

6.2 Master Theorem

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 65/609

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

6.2 Master Theorem

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 65/609

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B) 1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow mult(A_1, B_1)$ 6: $Z_0 \leftarrow mult(A_0, B_0)$ 7: $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

 Algorithm 4 mult(A, B)
 0

 1: if |A| = |B| = 1 then
 0

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_0 \leftarrow mult(A_0, B_0)$

 7: $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

 Algorithm 4 mult(A, B)
 0

 1: if |A| = |B| = 1 then
 0

 2: return $a_0 \cdot b_0$ 0

 3: split A into A_0 and A_1 0

 4: split B into B_0 and B_1 0

 5: $Z_2 \leftarrow mult(A_1, B_1)$ 0

 6: $Z_0 \leftarrow mult(A_0, B_0)$ $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

 Algorithm 4 mult(A, B)
 0

 1: if |A| = |B| = 1 then
 0

 2: return $a_0 \cdot b_0$ 0

 3: split A into A_0 and A_1 0

 4: split B into B_0 and B_1 0

 5: $Z_2 \leftarrow mult(A_1, B_1)$ 0

 6: $Z_0 \leftarrow mult(A_0, B_0)$ 7: $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)0(1)1: if |A| = |B| = 1 then0(1)2: return $a_0 \cdot b_0$ 0(1)3: split A into A_0 and A_1 0(n)4: split B into B_0 and B_1 0(n)5: $Z_2 \leftarrow mult(A_1, B_1)$ 0(n)6: $Z_0 \leftarrow mult(A_0, B_0)$ $7: Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{n}{2}) + O(n)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{n}{2}) + \mathcal{O}(n)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) pprox \Theta(n^{1.59}).$

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) pprox \Theta(n^{1.59}).$

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".