
1 Note that the cases do not cover all pos- |

6.2 Master Theorem ! sibilities. !
Lemma 1
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence

T(n) = aT() +f(n) .

Case 1.
If f(n) = O(n'°8(@=€) then T(n) = O(nlogra),

Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'°8r 2 1og"*! n),
k=0.

Case 3.
If f(n) = Q(nlo8r@+€y and for sufficiently large n
af(y) <cf(n) for some constant c < 1 then T(n) = O(f(n)).

© Ernst Mayr, Harald Réacke 51

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

52

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

53

6.2 Master Theorem

This gives
log, n—1

T(n) =n'%d 4 a?(%))

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

54

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)

i=0

log, n—1 logs, a—e
- Z ; E Sb
<cC a bi

i=0
log, n—1]
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ Cnlogba—E(beloghn —1)/(b€ - 1)
= cnloBa€(me — 1)/ (b€ - 1)
[

_ logy, a ., _ €
pe_ 1" h(mt=1)/(n7)

Hence,

Cc

T(n) < <

pe g > T(n) = 08 9).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 55

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1 n
_plogya _ ig(N
T(n)—-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0
cnl°8 4log, n

IA

Hence,

T(n) = O(n'°% *log, n) l:> T(n) = O(n'°8ralogn).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke 56

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 ' n
T(n) —nlogra = Z a‘f(E)
i=0
logp n—1
>c > al<£

)logb a
i=0

logy n—1
=cnlo®a X
i=0
= cnlo% 2og, n

Hence,

T(n) = Q(n'°8 %log, n) {:> T(n) = Q(n'°82logn).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 57

Case 2. Now suppose that f(n) < cn'°82(log, (n))k.

logp n—1

T —nlone =3 atf ()
log, n—1 logy, a k
‘n n
s 3 afg) - (om (5))
i=0
-1 bg k
n:h":«{’:logbn] = cnlogra Z (logb (ﬁ))
i=0

£-1
_ Cnlogba Z (‘g _ l)k
i=0

0
_ Cnlogh uz ik ~ %ngrl
i=1

c

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

~ Enlogha€k+l ‘:> T(n) = O(nloghalogk+l n).

58

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1

logya _ i n
T(n) —no°8a = Z af<ﬁ>
i=0
log, n—-1
< > cifm) +0omosne)
i=0
a<1:3%gal = I]q_’;l e =7_ logy a)
Hence,
T(n) < O(f(n)) > T(n) = 0(f(n)).|
| Where did we use f(n) > Q(nlo8»a+)7 |
m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

59

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,00010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

60

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1011
10001
100010
01000000 1 e
10001 000Q .- 2tmostmen=inbis .
10111011

method” for multiplying integers.

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 61

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B By | X | A Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

Hence,

A-B=A1By-2"+ (A;Bo + AoBy) - 22 + Ag - By

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

62

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zo — mult(Ag, By)

8: return Z - 2" + Z; - 27 Zo

We get the following recurrence:

T(n) = 4T<%) +OMm) .

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

O(1)
O(1)
O(n)
On)
T(%)

2T (1) + O(n)

T(%)
O(n)

63

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra-¢) T(n) = O(nlogr a)
» Case 2: f(n) =08 alogkn) T(n) = O(n'°% 41og"*! n)
» Case 3: f(n) = Q(nlo8ra+e) T(n) = O(f(n))

Inour case a =4, b =2, and f(n) = @(n). Hence, we are in
Case 1, since n = O(n?=€) = O(nlo8ra-c),

We get a running time of ®(n?) for our algorithm.

= Not better then the “school method”.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

64

I
I
[

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

A more precise
(correct) analysis
would say that
computing Z;
needs time
T(%+1)+0(n).

© Ernst Mayr, Harald Racke

Z1 = A1By + ApBy =7 =2
—r
= (Ap+ A1) - (Bo +B1) — A1B1 — AgBo

Algorithm 4 mult(A, B)

1
2
3:
4: split B into By and B,

o wv

. if |A| = |B] = 1 then

return ag - by
split A into Ag and A;

Z> — mult(Aq,B;)
Zo — mult(Ag, Bo)

7: Z1 — mult(Ag+A1,Bg+B1) —Z> — Z

n
return Z» - 2" + Z1 - 22 + Z

6.2 Master Theorem

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%)+0(n)
O(n)

65

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0(n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-€) T(n) = ©(nloss a)
> Case 2: f(n) = (% %loghn) T(n) = @M% 2logt ! n)
> Case 3: f(n) =m0 at€) T(n) = 0(f(n)

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(nl.SQ)_

A huge improvement over the “school method”.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

66

	Master Theorem

