6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(5) +cn n=2
0 otherwise

T(n) < {

One way of solving such a recurrence is to guess a solution, and
check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < ZT(f) +cn
n n
< Z(dzlogz) +cn
=dn(logn-1) +cn

=dnlogn+ (c—d)n
<dnlogn

if we choose d > c.

Formally one would make an induction proof, where the above is
the induction step. The base case is usually trivial.

EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Racke

47

m EADS 6.1 Guessing+Induction

© Ernst Mayr, Harald Racke 46

6.1 Guessing+Induction T(n) < { 2T(3) +cn n=16
| b otw.

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.

> induction step2...n -1 — n:

Suppose statem. is true forn’ € {2,...,n — 1}, and n > 16.
We prove it for n:

| » Note that this proves the

: statement for n € Nx», as the
, statement is wrong for n = 1.
1

I

1

1

I

T(n) < ZT(g) +cn

< 2(d%10g%) +cn

e The base case is usually omitted,
as it is the same for different
recurrences.

=dn(logn-1) +cn
=dnlogn+ (c—-dn

<dnlogn

Hence, statement is true if we choose d > c.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([5]) +en n=16
b otherwise

T(n) < {

Note that we can do this as for constant-sized inputs the running
time is always some constant (b in the above case).

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Réacke

49

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T<[E]> +cn
n n
< Z(d[g]log [5]) +cn
[2]<%3+1| <2(d(n/2+1)log(n/2+1)) +cn

+1l=<n| <dnlog (%n) +2dlogn +cn

log {5n = logn + (log9 — 4)] =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn +cn
<dnlogn - 0.33dn +cn

<dnlogn

for a suitable choice of d.

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Racke

50

------------------------- \
1 Note that the cases do not cover all pos-
1

6.2 Master Theorem ! Sibilities. ,
Lemma 1
Lleta=>=1,b =1 and e > 0 denote constants. Consider the
recurrence

T(n) = aT(%) +f(n) .

Case 1.
If f(n) = O (@D =€) then T(n) = O(nlosr2),

Case 2.
If f(n) = ©(n'°8 (@ 1ogk n) then T(n) = O(M°8 41ogk* 1 n
k= 0.

~

1]

Case 3.
If f(n) = Q(nlog@D+€y and for sufficiently large n
af(y) < cf(n) for some constant c < 1 then T(n) = O(f(n)).

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 51

6.2 Master Theorem

We prove the Master Theorem for the case that »n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

52

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke 53

