
6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
{

2T
(⌈n

2

⌉)+ cn n ≥ 2

0 otherwise

Assume that instead we had

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.

EADS 6.1 Guessing+Induction

© Ernst Mayr, Harald Räcke 46

6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

if we choose d ≥ c.

Formally one would make an induction proof, where the above is

the induction step. The base case is usually trivial.

EADS 6.1 Guessing+Induction

© Ernst Mayr, Harald Räcke 47

6.1 Guessing+Induction

• Note that this proves the
statement for n ∈ N≥2, as the
statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

ñ base case (2 ≤ n < 16): true if we choose d ≥ b.

ñ induction step 2 . . . n− 1→ n:

Suppose statem. is true for n′ ∈ {2, . . . , n− 1}, and n ≥ 16.

We prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

Hence, statement is true if we choose d ≥ c.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following

recurrence:

T(n) ≤
{

2T(
⌈n

2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).

EADS 6.1 Guessing+Induction

© Ernst Mayr, Harald Räcke 49

6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn
≤ dn log

(9
16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
≤ dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4

EADS 6.1 Guessing+Induction

© Ernst Mayr, Harald Räcke 50

6.2 Master Theorem

Lemma 1

Let a ≥ 1, b ≥ 1 and ε > 0 denote constants. Consider the

recurrence

T(n) = aT
(n
b

)
+ f(n) .

Case 1.

If f(n) = O(nlogb(a)−ε) then T(n) = Θ(nlogb a).

Case 2.

If f(n) = Θ(nlogb(a) logkn) then T(n) = Θ(nlogb a logk+1n),
k ≥ 0.

Case 3.

If f(n) = Ω(nlogb(a)+ε) and for sufficiently large n
af(nb) ≤ cf(n) for some constant c < 1 then T(n) = Θ(f (n)).

Note that the cases do not cover all pos-
sibilities.

EADS 6.2 Master Theorem

© Ernst Mayr, Harald Räcke 51

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

b`, and we assume that the non-recursive case occurs for

problem size 1 and incurs cost 1.

EADS 6.2 Master Theorem

© Ernst Mayr, Harald Räcke 52

The Recursion Tree

The running time of a recursive algorithm can be visualized by a

recursion tree:

x f(n)

af(nb)

a2f(nb2)

alogb n

nlogb a

=

n

n
b

n
b

n
b

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

11111111 1 1 1 1 1 1 1

a

aaa

a a a a a a a a a

EADS 6.2 Master Theorem

© Ernst Mayr, Harald Räcke 53

