6.1 Guessing+Induction

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \geq 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

EADS © Ernst Mayr, Harald Räcke	6.1 Guessing+Induction

6.1 Guessing+Induction
Guess:
$$T(n) \le dn \log n$$
.
Proof. (by induction)
• base case $(2 \le n < 16)$: true if we choose $d \ge b$.
• induction step $2 \dots n - 1 \rightarrow n$:
Suppose statem. is true for $n' \in \{2, \dots, n - 1\}$, and $n \ge 16$.
We prove it for n :
 $T(n) \le 2T(\frac{n}{2}) + cn$
 $\le 2(d\frac{n}{2}\log\frac{n}{2}) + cn$
 $= dn(\log n - 1) + cn$
 $= dn\log n + (c - d)n$
Hence, statement is true if we choose $d \ge c$.

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant d. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

if we choose $d \ge c$.

46

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

	6.1 Guessing+Induction	
🛛 🛄 🔲 © Ernst Mayr, Harald Räcke		47

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

 $T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

EADS © Ernst Mayr, Harald Räcke

6.1 Guessing+Induction

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right| \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$
for a suitable choice of d.

6.1 Guessing+Induction

EADS © Ernst Mayr, Harald Räcke

50

52

6.2 Master Theorem

Note that the cases do not cover all pos-

51

Lemma 1

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Case 1. If $f(n) = O(n^{\log_b(a)-\epsilon})$ then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

EADS 6.2 Master Theorem

