Amortized Analysis

Definition 1

A data structure with operations op;(),...,0pk() has amortized
running times ty,..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most

>iki-ti(n).
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Potential Method

Introduce a potential for the data structure.
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Introduce a potential for the data structure.

» ®(D;) is the potential after the i-th operation.
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Potential Method

Introduce a potential for the data structure.

» ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢i+®(D;) - d(Di-1) .
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Potential Method

Introduce a potential for the data structure.

» ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is
Ci=c¢i+®(Dy) —®(D;q) .

» Show that ®(D;) = ®(Dyg).
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Potential Method

Introduce a potential for the data structure.

» ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is
Ci=c¢i+®(Dy) —®(D;q) .
» Show that ®(D;) = ®(Dyg).

Then

k
2. Ci
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Potential Method

Introduce a potential for the data structure.

» ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is
Ci=c¢i+®(Dy) —®(D;q) .
» Show that ®(D;) = ®(Dyg).

Then
k k

>ci< > ci+®(Dy) — (Do)
i-1 i-1
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Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

¢i=ci+®(D;) —P(D;q) .
» Show that ®(D;) = ®(Dyg).

Then
k k

>ci< > ci+®(Dy) — (Do)
i-1 i-1

Il
M=
Q)

-
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—

This means the amortized costs can be used to derive a bound
on the total cost.
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Example: Stack
Stack

> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.
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Example: Stack
Stack

> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:

» S.push(): cost 1.
> S.pop(): cost 1.
> S. multipop(k): cost min{size, k} = k.

T
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Example: Stack

Use potential function ®(S) = number of elements on the stack.
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Example: Stack
Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

épushZCpush+A¢=1+1S2 .
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Example: Stack
Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

épushZCpush+A¢= 1+1 SZ .
> S.pop(): cost

Cpop = Cpop + AP =1-1<0 .
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Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

Cpush = Cpush + AP =1+1 <2 .
> S.pop(): cost

Cpop = Cpop + AP =1-1<0 .
» S. multipop(k): cost

Cmp = Cmp + A® = min{size, k} — min{size,k} <0 .
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

» Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k =1).
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Example: Binary Counter
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+AP=1+1<2.
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Co-1=Co1+AP=1+1<2.
» Changing bit from 1 to O:

él_.()=C1_.()+ACI>=1—1SO.
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:

» Changing bit from 0 to 1:
Coo1=Co1+AP=1+1<2 .

» Changing bit from 1 to O:
Ci0=Ci-0+A®=1-1<0.

» Increment: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCi—o + Co—1 < 2.
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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8.3 Fibonacci Heaps

Additional implementation details:
» Every node x stores its degree in a field x.degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x.marked that specifies
whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:
» t(S) denotes the number of trees in the heap.

» m(S) denotes the number of marked nodes.

» We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S.

minimum()

» Access through the min-pointer.

\ 4

Actual cost O(1).

v

v

Amortized cost O(1).

No change in potential.

T
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8.3 Fibonacci Heaps

S. merge(S’)
» Merge the root lists.

» Adjust the min-pointer
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8.3 Fibonacci Heaps

S. merge(S’)
» Merge the root lists.

» Adjust the min-pointer

Running time:
» Actual cost O(1).
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8.3 Fibonacci Heaps

S. merge(S’)
» Merge the root lists.

» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.
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8.3 Fibonacci Heaps

S. merge(S’)
» Merge the root lists.

» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.

» Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S. insert(x)
> Create a new tree containing x.
> Insert x into the root-list.
» Update min-pointer, if necessary.

>23)< >(24
@0 @)
(33
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8.3 Fibonacci Heaps

S. insert(x)
> Create a new tree containing x.
> Insert x into the root-list.
» Update min-pointer, if necessary.
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8.3 Fibonacci Heaps

S. insert(x)
> Create a new tree containing x.
> Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
» Amortized costis c + O(1) = O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.

Time t - O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:
o[1]2
Ig1°
current \/'
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

? ?
current -
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8.3 Fibonacci Heaps

Consolidate:

? ?
current \_ -/
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D,, + t elements in root-list before consolidate.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D,, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D,, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D,, + t elements in root-list before consolidate.
» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.
» Therefore A® <D, +1 - t;
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.
» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.
» Therefore A® <D, +1 - t;

» We can pay c - (t — Dy, — 1) from the potential decrease.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.
Therefore A® <D, +1 —t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

v

The amortized cost is

v
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.
Therefore A® <D, +1 —t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

v

The amortized cost is

c1-Dp+t)—c-(t-Dp-1)

v
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.
Therefore A® <D, +1 —t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

v

The amortized cost is
c1-Dp+t)y—c-(t—Dyp—-1)
<(cp+c)Dyp+(c1 —o)t+c

v
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).

Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.
Therefore A® <D, +1 —t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

v

The amortized cost is
c1-Dp+t)y—c-(t—Dyp—-1)
<(cp+c)Dp+(c1—c)t+c<2c(Dyp+1)

v
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.

Therefore A® <D, +1 —t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

v

The amortized cost is
c1-Dp+t)y—c-(t—Dyp—-1)
<(cp+c)Dp+(c1—c)t+c<2c(Dp+1) <ODy)

v
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()
» t' < Dy, +1 as degrees are different after consolidating.

Therefore A® <D, +1 —t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

v

The amortized cost is
c1-Dp+t)y—c-(t—Dyp—-1)
<(cp+c)Dp+(c1—c)t+c<2c(Dp+1) <ODy)

v

forc>cy .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

‘m EADS 8.3 Fibonacci Heaps =
© Ernst Mayr, Harald Réacke



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy <logn.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.

Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.

Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

» Continue cutting the parent until you arrive at an unmarked
node.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

» Continue cutting the parent until you arrive at an unmarked
node.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

» Execute the following:
p < parent[x];
while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p — pp;
if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
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» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.
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Actual cost:
» Constant cost for decreasing the value.
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Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.

Amortized cost:
» t' =t + 4, as every cut creates one new root.

»m' <m—-{F-1)+1=m-¥L+2, since all but the first cut
unmarks a node; the last cut may mark a node.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.

Amortized cost:
» t' =t + 4, as every cut creates one new root.
»m' <m—-{F-1)+1=m-¥L+2, since all but the first cut
unmarks a node; the last cut may mark a node.
> AP <l +2(—0+2)=4-10
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.

Amortized cost:
» t' =t + 4, as every cut creates one new root.

»m' <m—-{F-1)+1=m-¥L+2, since all but the first cut
unmarks a node; the last cut may mark a node.

AP <l +2(—4+2)=4-7
Amortized cost is at most

v

v
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.

Amortized cost:
» t' =t + 4, as every cut creates one new root.

»m' <m—-{F-1)+1=m-¥L+2, since all but the first cut
unmarks a node; the last cut may mark a node.

» AD <l +2(-0+2)=4-%¢
» Amortized cost is at most
@ +1)+c(4-10)
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.

Amortized cost:
» t' =t + 4, as every cut creates one new root.

»m' <m—-{F-1)+1=m-¥L+2, since all but the first cut
unmarks a node; the last cut may mark a node.

» AD <l +2(-0+2)=4-%¢
» Amortized cost is at most
cl+1)+c(4-"0) < (cop—c)l+4c+co
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢y - (£ + 1), for some constant ¢>.

Amortized cost:
» t' =t + 4, as every cut creates one new root.

»m' <m—-{F-1)+1=m-¥L+2, since all but the first cut
unmarks a node; the last cut may mark a node.

» A < +2(-0+2)=4-1¢

» Amortized cost is at most
o+ +cd-1) < (cp—c)l+4c+cr = O(1),
if c > co.
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Delete node

H. delete(x):
» decrease value of x to —co.

» delete-min.

Amortized cost: @ (D)
» O(1) for decrease-key.
» O(Dn) for delete-min.
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8.3 Fibonacci Heaps

Lemma 2

Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then
0 ifi=1

degree(y;) = { i—2 fi>1

‘m EADS 8.3 Fibonacci Heaps =)
© Ernst Mayr, Harald Réacke



8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...

linked to x.

, Vi—1 were already
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degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.
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degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,»;—1 were already
linked to x.

» Hence, at this time degree(x) = i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.

T
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8.3 Fibonacci Heaps

> Let s; be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
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8.3 Fibonacci Heaps

> Let s; be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

» s, monotonically increases with k

» so =1 and sy = 2.
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8.3 Fibonacci Heaps

> Let s; be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

» s, monotonically increases with k

» so =1 and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2
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8.3 Fibonacci Heaps

> Let s; be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

» s, monotonically increases with k

» so =1 and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k

Sk=2+ Z size(y;)
i=2
k
>2+ Z Si—2
i=2
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8.3 Fibonacci Heaps
> Let s; be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so=1and s; = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2
k

>2+ Z S$i—2
i=2

k-2
=2+ z Si
i=0
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8.3 Fibonacci Heaps

Definition 3
Consider the following non-standard Fibonacci type sequence:

1 ifk=0

Fr=4 2 ifk=1
Fr 1+ Fro ifk=2

Facts:
1. Fx = ¢k.
2. Fork>2: F =2+ >K2F.

The above facts can be easily proved by induction. From this it
follows that sx > Fx > ¢k, which gives that the maximum degree
in a Fibonacci heap is logarithmic.
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