
Amortized Analysis

Definition 1

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with

an empty data-structure) that operate on at most n elements,

and let ki denote the number of occurences of opi() within this

sequence. Then the actual running time must be at most∑
i ki · ti(n).
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Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑
i=1

ci ≤
k∑
i=1

ci + Φ(Dk)− Φ(D0) =
k∑
i=1

ĉi

This means the amortized costs can be used to derive a bound

on the total cost.
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Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the

stack.

ñ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.
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Example: Stack

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .
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Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).
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Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the

number of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

7 24
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8.3 Fibonacci Heaps

Additional implementation details:

ñ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

ñ Every node stores a boolean value x.marked that specifies

whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:

ñ t(S) denotes the number of trees in the heap.

ñ m(S) denotes the number of marked nodes.

ñ We use the potential function Φ(S) = t(S)+ 2m(S).
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min

The potential is Φ(S) = 5+ 2 · 3 = 11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S.minimum()

ñ Access through the min-pointer.

ñ Actual cost O(1).
ñ No change in potential.

ñ Amortized cost O(1).
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8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer
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18

39

min min

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.
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min

x

Running time:

ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35
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ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:

7
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0 1 2 3

xx x x x

current
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8.3 Fibonacci Heaps

Actual cost for delete-min()
ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()

ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will

be a set of distinct binomial trees, and, hence, the Fibonacci

heap will be (more or less) a Binomial heap right after the

consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x,

and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x (unless it’s a root).
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(`+1)+c(4−`) ≤ (c2−c)`+4c+c2 = O(1) ,
if c ≥ c2.
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Delete node

H. delete(x):
ñ decrease value of x to −∞.

ñ delete-min.

Amortized cost: O(Dn)
ñ O(1) for decrease-key.

ñ O(Dn) for delete-min.
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8.3 Fibonacci Heaps

Lemma 2

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
{

0 if i = 1

i− 2 if i > 1
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8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.
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8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑
i=2

size(yi)

≥ 2+
k∑
i=2

si−2

= 2+
k−2∑
i=0

si
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8.3 Fibonacci Heaps

Definition 3

Consider the following non-standard Fibonacci type sequence:

Fk =


1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+

∑k−2
i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.
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