Amortized Analysis

Definition 1

A data structure with operations op;(),...,0op;() has amortized
running times tq,..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most

Zi ki-ti(n).

© Ernst Mayr, Harald Racke

338

Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is
Ci=ci+®(D;) —®(D;_1) .
» Show that ®(D;) = ®(Dy).

Then
k k

k
D.ci< D ci+®(Dy) - (Do) = D ¢
i=1

i=1 i=1

This means the amortized costs can be used to derive a bound
on the total cost.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

339

Example: Stack

Stack
» S.push()
> S.pop()
» S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
» S.push(): cost 1.
> S.pop(): cost 1.
» S. multipop(k): cost min{size, k} = k.

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

340

Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

Cpush = Cpush + AP =1+1<2 . ! Note that the analysis

1 becomes wrong if pop() or

> S.pop(): cost "empty stack

> S. multipop(k): cost

Cimp = Cmp + A® = min{size, k} — min{size,k} <0 .

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke

\ multipop() are called on an

341




Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

» Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Racke 342

Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from O to 1:
Coe1=Co1 +AP=1+1<2.
» Changing bit from 1 to O:
Cio0=Ci0+A®=1-1<0.

» Increment: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCi_o + Co—1 < 2.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

343

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke 344

8.3 Fibonacci Heaps

Additional implementation details:
» Every node x stores its degree in a field x. degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke

345




8.3 Fibonacci Heaps

The potential function:
> t(S) denotes the number of trees in the heap.
» m(S) denotes the number of marked nodes.
» We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Racke 346

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

347

8.3 Fibonacci Heaps

S. minimum ()

» Access through the min-pointer.
» Actual cost O(1).
» No change in potential.

» Amortized cost O(1).

m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke 348

83 FibonaCCi HeapS replaced by red edges.

S.merge(S’)
» Merge the root lists.
> Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.
» Hence, amortized cost is O(1).

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

¢ In the figure below the dashed edges are

I
\ o The minimum of the left heap becomes
i the new minimum of the merged heap.

349




1 xis inserted next to the min-pointer as ]
1 this is our entry point into the root-list. :

8.3 Fibonacci Heaps

S.insert(x)
» Create a new tree containing x.
> Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
» Amortized costis c + O(1) = O(1).

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

350

i D(min) is the number of !
I children of the node that
| stores the minimum. :

8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 351

i D(min) is the number of !
1 children of the node that :
1

8.3 Fibonacci Heaps

I L
| stores the minimum.

S. delete-min(x)

> Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).

© Ernst Mayr, Harald Réacke

8.3 Fibonacci Heaps

351

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
current
min ‘0 (189 <«—>(@aN<«—>(2) 23 (24) 17
G @ 2¢) @¢) (39

| During the consolidation we traverse the root list. Whenever we discover two :
I trees that have the same degree we merge these trees. In order to efficiently :
: check whether two trees have the same degree, we use an array that contains
 for every degree value d a pointer to a tree left of the current pointer whose root 1
Lhas degree d (if such a tree exist). :

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke 352




8.3 Fibonacci Heaps

Consolidate:

current

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Racke

EADS
© Ernst Mayr, Harald Racke 352
8.3 Fibonacci Heaps
Consolidate:
0[1/2]3
RI@IRIS
current ) )
4
min—>(7)< (18«2 23 (23) 17
@) 69 2¢) (o) (39
@9 (39
8.3 Fibonacci Heaps
352

8.3 Fibonacci Heaps

Consolidate:

current

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke

EADS
© Ernst Mayr, Harald Racke 352
8.3 Fibonacci Heaps
Consolidate:
01|23
o] (? (? [e]
current ))
min 18 @3) (23) 17
@) 69 OED) (39
@9 (39
8.3 Fibonacci Heaps
352




8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
A
current k\/|)

8.3 Fibonacci Heaps

Consolidate:

current =

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352
8.3 Fibonacci Heaps
Consolidate:
0[1]2]3
PLPICl?
current u 2
17,
m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352
8.3 Fibonacci Heaps
Consolidate:
m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke 352




't and t’ denote the number of trees before and |

8.3 Fibonacci Heaps

Actual cost for delete min() : ber of children) of a tree node.

» At most D,, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (D, +t).

Amortized cost for delete-min()

» t' < Dy + 1 as degrees are different after consolidating.

» Therefore A® <D, +1-1t;

» We can pay ¢ - (t — D, — 1) from the potential decrease.

» The amortized cost is
c1-Dp+t)—c-(t—-Dy—-1)

<(ci+c)Dp+(ci—c)t+c<2c(Dn+1)<0O(Dyn)

forc=c; .

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

1 after the delete-min() operation, respectively. :
: Dy, is an upper bound on the degree (i.e., num-
I
1

353

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy <logn.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

354

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

» Just decrease the key-value of element referenced by h.
Nothing else to do.

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.

If the heap-property is violated, cut the parent edge of x,

and make x into a root.

Adjust min-pointers, if necessary.

Mark the (previous) parent of x (unless it’s a root).

© Ernst Mayr, Harald Réacke

v

v

v

8.3 Fibonacci Heaps

355




Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
» If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.

© Ernst Mayr, Harald Réacke

8.3 Fibonacci Heaps

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

Decrease key-value of element x reference by h.

v

v

Cut the parent edge of x, and make x into a root.

v

Adjust min-pointers, if necessary.
1 first step towards becoming a

v

Execute the following:
p — parent[x];
while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp;
if p is unmarked and not a root mark it;

'it is marked; the second time it

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Réacke

| root. The first time x loses a child

1 loses a child it is made into a root.

356

: Marking a node can be viewed as a .




Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢p - (£ + 1), for some constant ¢».

Amortized cost:
» t' =t + ¥, as every cut creates one new root.

»m ' <m—-{F-1)+1=m-"L+2, since all but the first cut
unmarks a node; the last cut may mark a node.

» A< +2(—4+2)=4-4¢

» Amortized cost is at most

_______________

't and t": number of

1 trees before and after
| operation.
c2(l+1)+c(4-¥) < (ca—c)l+4c+cp = O(1),! mand m": number of
 marked nodes before
| and after operation.

if c > co.

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Racke 357

Delete node

H. delete(x):
» decrease value of x to —o.

» delete-min.

Amortized cost: O (D)
» O(1) for decrease-key.
» O(Dn) for delete-min.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 358

8.3 Fibonacci Heaps

Lemma 2
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(y:) ZSL i-2 ifi>1

:The marking process is very important for the proof of :
I this lemma. It ensures that a node can have lost at most !
1 one child since the last time it became a non-root node. :
| When losing a first child the node gets marked; when '
1 losing the second child it is cut from the parent and
: made into a root. :

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Racke 359

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also
degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.

» Therefore, degree(y;) =i — 2.

8.3 Fibonacci Heaps

© Ernst Mayr, Harald Racke 360




8.3 Fibonacci Heaps

> Let s; be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

» s, monotonically increases with k

» so =1 and s; = 2.

Let x be a degree k node of size s; and let y1,..., Yy beits
children.

k
Sk=2+ Z size(y;)
i=2
k
2 + Si—?

I %
N
+
~ bl
I | Il
o NI
[}
-

m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 361

8.3 Fibonacci Heaps

Definition 3
Consider the following non-standard Fibonacci type sequence:

1 ifk=0

Fp=1 2 if k=1
Fy_1+ Fr-> if k=2

Facts:
1. Fx = ¢k.
2. Fork=2: Fp=2+3K2F,

The above facts can be easily proved by induction. From this it
follows that s; = Fx > ¢k, which gives that the maximum degree
in a Fibonacci heap is logarithmic.

EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

362




	Fibonacci Heaps

