
7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the `-th element; return “error” if

the data-structure contains less than ` elements.

Augment an existing data-structure instead of developing a

new one.

EADS

© Ernst Mayr, Harald Räcke 185/609

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the `-th element; return “error” if

the data-structure contains less than ` elements.

Augment an existing data-structure instead of developing a

new one.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 185/609

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 186/609

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 186/609

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 186/609

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 186/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 187/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 187/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 187/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

4. How does find-by-rank work?

Find-by-rank(k) Í Select(root, k) with

Algorithm 15 Select(x, i)
1: if x = null then return error

2: if left[x] ≠ null then r ← left[x]. size+1 else r ← 1

3: if i = r then return x
4: if i < r then

5: return Select(left[x], i)
6: else

7: return Select(right[x], i− r)

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 188/609

Select(x, i)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

Select(x, i)

Select(25 , 14)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

Select(x, i)

Select(13 , 14)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

Select(x, i)

Select(21 , 5)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

Select(x, i)

Select(16 , 5)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

Select(x, i)

Select(19 , 3)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

Select(x, i)

Select(20 , 1)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 189/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size

counter on every node on this path. Maintain the size field

during rotations.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 190/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size

counter on every node on this path. Maintain the size field

during rotations.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 190/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size

counter on every node on this path. Maintain the size field

during rotations.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 190/609

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size

counter on every node on this path. Maintain the size field

during rotations.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 190/609

Rotations

The only operation during the fix-up procedure that alters the

tree and requires an update of the size-field:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

|A|+|B|+|C|+2 |A|+|B|+|C|+2

|A|+|B|+1|B|+|C|+1

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields

of the children.

EADS 7.4 Augmenting Data Structures

© Ernst Mayr, Harald Räcke 191/609

	Augmenting Data Structures

