
7.3 AVL-Trees

Definition 1

AVL-trees are binary search trees that fulfill the following

balance condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 2

An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

EADS

© Ernst Mayr, Harald Räcke 161

AVL trees

Proof.

The upper bound is clear, as a binary tree of height h can only

contain
h−1∑
j=0

2j = 2h − 1

internal nodes.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 162

AVL trees

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 163

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

gh := 1+minimal size of AVL-tree of height h .

Then

g1 = 2 = F3

g2 = 3 = F4

gh − 1 = 1+ gh−1 − 1+ gh−2 − 1 , hence

gh = gh−1 + gh−2 = Fh+2

7.3 AVL-Trees

An AVL-tree of height h contains at least Fh+2 − 1 internal nodes.

Since

n+ 1 ≥ Fh+2 = Ω
(1+√5

2

)h ,

we get

n ≥ Ω
(1+√5

2

)h ,

and, hence, h = O(logn).

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 165

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .

balance[v] := height(Tc`)− height(Tcr) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,

respectively.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 166

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 167

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let w denote the parent of the newly inserted node x.

ñ One of the following cases holds:

w

x

bal(w) = −1

w

x a

bal(w) = 0

w

xa

bal(w) = 0

w

x

bal(w) = 1

ñ If bal[w] ≠ 0, Tw has changed height; the

balance-constraint may be violated at ancestors of w.

ñ Call AVL-fix-up-insert(parent[w]) to restore the

balance-condition.

Note that before the insertion w is right
above the leaf level, i.e., x replaces a
child of w that was a dummy leaf.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 169

AVL-trees: Insert

Invariant at the beginning of AVL-fix-up-insert(v):

1. The balance constraints hold at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not

change its height, and the whole procedure would have

been aborted in the previous step.

Note that these constraints hold for the
first call AVL-fix-up-insert(parent[w]).

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 170

AVL-trees: Insert

Algorithm 11 AVL-fix-up-insert(v)
1: if balance[v] ∈ {−2,2} then DoRotationInsert(v);
2: if balance[v] ∈ {0} return;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will

do at most one rotation.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 171

AVL-trees: Insert

Algorithm 12 DoRotationInsert(v)
1: if balance[v] = −2 then // insert in right sub-tree
2: if balance[right[v]] = −1 then
3: LeftRotate(v);
4: else
5: DoubleLeftRotate(v);
6: else // insert in left sub-tree
7: if balance[left[v]] = 1 then
8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 172

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long

as no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the

right sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 173

AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in

a balance of −2 at v.

Before the insertion the height of Tv was h+ 1.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 174

Case 1: balance[right[v]] = −1

We do a left rotation at v

Now, the subtree has height h+ 1 as before the insertion.

Hence, we do not need to continue.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 175

v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate(v)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate(x)

DoubleLeftRotate(v)

Height is h+ 1, as
before the insert.

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed—is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call AVL-fix-up-delete(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 177

AVL-trees: Delete

Invariant at the beginning AVL-fix-up-delete(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has decreased its height by one.

4. The balance at the node c fulfills balance[c] = 0. This holds

because if the balance of c is in {−1,1}, then Tc did not

change its height, and the whole procedure would have

been aborted in the previous step.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 178

AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for

the case of a delete there may be a logarithmic number of

rotations.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 179

AVL-trees: Delete

Algorithm 14 DoRotationDelete(v)
1: if balance[v] = −2 then // deletion in left sub-tree
2: if balance[right[v]] ∈ {0,−1} then
3: LeftRotate(v);
4: else
5: DoubleLeftRotate(v);
6: else // deletion in right sub-tree
7: if balance[left[v]] = {0,1} then
8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

Note that the case distinction on the second level (bal[right[v]]
and bal[left[v]]) is not done w.r.t. the child c for which the sub-
tree Tc has changed. This is different to AVL-fix-up-insert.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 180

AVL-trees: Delete

It is clear that the invariant for the fix-up routine hold as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills the balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 181

AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in

a balance of 2 at v.

Before the deletion the height of Tv was h+ 2.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 182

Case 1: balance[left[v]] ∈ {0, 1}

If the middle subtree has height h the whole tree has height

h+ 2 as before the deletion. The iteration stops as the balance

at the root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate(v)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(x)

RightRotate(v)

DoubleRightRotate(v)Sub-tree has height
h+ 1, i.e., it has
shrunk. The
balance at y is
zero. We continue
the iteration.

AVL Trees

Bibliography

[OW02] Thomas Ottmann, Peter Widmayer:
Algorithmen und Datenstrukturen,
Spektrum, 4th edition, 2002

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Chapter 5.2.1 of [OW02] contains a detailed description of AVL-trees, albeit only in German.

AVL-trees are covered in [GT98] in Chapter 7.4. However, the coverage is a lot shorter than in [OW02].

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 185

	AVL-Trees

