
10 van Emde Boas Trees

Dynamic Set Data Structure S:

ñ S. insert(x)
ñ S.delete(x)
ñ S. search(x)
ñ S.min()
ñ S.max()
ñ S. succ(x)
ñ S.pred(x)

EADS

© Ernst Mayr, Harald Räcke 392/609



10 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

ñ S. insert(x): Inserts x into S.

ñ S. delete(x): Deletes x from S. Usually assumes that x ∈ S.

ñ S.member(x): Returns 1 if x ∈ S and 0 otw.

ñ S.min(): Returns the value of the minimum element in S.

ñ S.max(): Returns the value of the maximum element in S.

ñ S. succ(x): Returns successor of x in S. Returns null if x is

maximum or larger than any element in S. Note that x
needs not to be in S.

ñ S. pred(x): Returns the predecessor of x in S. Returns null

if x is minimum or smaller than any element in S. Note that

x needs not to be in S.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 393/609



10 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from

a restricted set?

In the following we assume that the keys are from

{0,1, . . . , u− 1}, where u denotes the size of the universe.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 394/609



Implementation 1: Array

0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

u

content

size

one array of u bits

Use an array that encodes the indicator function of the dynamic

set.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 395/609



Implementation 1: Array

Algorithm 21 array.insert(x)
1: content[x]← 1;

Algorithm 22 array.delete(x)
1: content[x]← 0;

Algorithm 23 array.member(x)
1: return content[x];

ñ Note that we assume that x is valid, i.e., it falls within the

array boundaries.

ñ Obviously(?) the running time is constant.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 396/609



Implementation 1: Array

Algorithm 24 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 397/609



Implementation 1: Array

Algorithm 24 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 397/609



Implementation 1: Array

Algorithm 24 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 397/609



Implementation 1: Array

Algorithm 26 array.succ(x)
1: for (i = x + 1; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 27 array.pred(x)
1: for (i = x − 1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 398/609



Implementation 2: Summary Array

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

√
u

√
u

√
u

√
u

√
u

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

ñ
√
u cluster-arrays of

√
u bits.

ñ One summary-array of
√
u bits. The i-th bit in the summary

array stores the bit-wise or of the bits in the i-th cluster.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 399/609



Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 400/609



Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 400/609



Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 400/609



Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 400/609



Implementation 2: Summary Array

Algorithm 28 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 29 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 401/609



Implementation 2: Summary Array

Algorithm 28 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 29 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 401/609



Implementation 2: Summary Array

Algorithm 28 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 29 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 401/609



Implementation 2: Summary Array

Algorithm 30 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ The running time is dominated by the cost of a minimum

computation on an array of size
√
u. Hence, O(√u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 402/609



Implementation 2: Summary Array

Algorithm 30 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ The running time is dominated by the cost of a minimum

computation on an array of size
√
u. Hence, O(√u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 402/609



Implementation 2: Summary Array

Algorithm 31 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 32 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(√u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 403/609



Implementation 2: Summary Array

Algorithm 31 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 32 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(√u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 403/609



Implementation 2: Summary Array

Algorithm 31 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 32 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(√u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 403/609



Implementation 2: Summary Array

Algorithm 33 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 404/609



Implementation 2: Summary Array

Algorithm 33 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 404/609



Implementation 2: Summary Array

Algorithm 34 pred(x)
1: m ← cluster[high(x)].pred(low(x))
2: if m ≠ null then return high(x) ◦m;

3: predcluster ← summary .pred(high(x));
4: if predcluster ≠ null then

5: offs ← cluster[predcluster].max();
6: return predcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 405/609



Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 406/609



Implementation 3: Recursion

We assume that u = 22k for some k.

The data-structure S(2) is defined as an array of 2-bits (end of

the recursion).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 407/609



Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We

only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 408/609



Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We

only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 408/609



Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We

only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 408/609



Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We

only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 408/609



Implementation 3: Recursion

Algorithm 35 member(x)
1: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 409/609



Implementation 3: Recursion

Algorithm 36 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ Tins(u) = 2Tins(
√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 410/609



Implementation 3: Recursion

Algorithm 37 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ Tdel(u) = 2Tdel(
√
u)+ Tmin(

√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 411/609



Implementation 3: Recursion

Algorithm 38 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Tmin(u) = 2Tmin(
√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 412/609



Implementation 3: Recursion

Algorithm 39 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Tsucc(u) = 2Tsucc(
√
u)+ Tmin(

√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 413/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).

Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`)

= Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`)

= Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u)

= Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1

= X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 414/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`).

Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`)

= Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`)

= Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u)

= 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1

= 2X
(`

2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 415/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`).

Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`)

= Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`)

= Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u)

= 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c`

= 2X
(`

2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .
Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 416/609



Implementation 4: van Emde Boas Trees

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

3

min

13

max

u
size

ñ The bit referenced by min is not set within

sub-datastructures.

ñ The bit referenced by max is set within sub-datastructures

(if max ≠ min).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 417/609



Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 418/609



Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 418/609



Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 418/609



Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 418/609



Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 418/609



Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 418/609



Implementation 4: van Emde Boas Trees

Algorithm 40 max()
1: return max;

Algorithm 41 min()
1: return min;

ñ Constant time.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 419/609



Implementation 4: van Emde Boas Trees

Algorithm 42 member(x)
1: if x =min then return 1; // TRUE

2: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1 =⇒ T(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 420/609



Implementation 4: van Emde Boas Trees

Algorithm 43 succ(x)
1: if min ≠ null ∧ x < min then return min;

2: maxincluster ← cluster[high(x)].max();
3: if maxincluster ≠ null ∧ low(x) < maxincluster then

4: offs ← cluster[high(x)]. succ(low(x));
5: return high(x) ◦ offs;

6: else

7: succcluster ← summary . succ(high(x));
8: if succcluster = null then return null;

9: offs ← cluster[succcluster].min();
10: return succcluster ◦ offs;

ñ Tsucc(u) = Tsucc(
√
u)+ 1 =⇒ Tsucc(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 421/609



Implementation 4: van Emde Boas Trees

Algorithm 44 insert(x)
1: if min = null then

2: min = x; max = x;

3: else

4: if x < min then exchange x and min;

5: if cluster[high(x)].min = null; then

6: summary . insert(high(x));
7: cluster[high(x)]. insert(low(x));
8: else

9: cluster[high(x)]. insert(low(x));
10: if x > max then max = x;

ñ Tins(u) = Tins(
√
u)+ 1 =⇒ Tins(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 422/609



Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 7 takes constant time as the

if-condition in Line 5 ensures that we are inserting in an empty

sub-tree.

The only non-constant recursive calls are the call in Line 6 and in

Line 9. These are mutually exclusive, i.e., only one of these calls

will actually occur.

From this we get that Tins(u) = Tins(
√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 423/609



Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 45 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 424/609



Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 45 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

find new minimum

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 424/609



Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 45 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

delete

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 424/609



Implementation 4: van Emde Boas Trees

Algorithm 45 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 425/609



Implementation 4: van Emde Boas Trees

Algorithm 45 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

fix maximum

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 425/609



Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and

Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the

cluster where x was deleted is now empty. But this means that

the call in Line 9 deleted the last element in cluster[high(x)].
Such a call only takes constant time.

Hence, we get a recurrence of the form

Tdel(u) = Tdel(
√
u)+ c .

This gives Tdel(u) = O(log logu).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 426/609



10 van Emde Boas Trees

Space requirements:

ñ The space requirement fulfills the recurrence

S(u) = (√u+ 1)S(
√
u)+O(√u) .

ñ Note that we cannot solve this recurrence by the Master

theorem as the branching factor is not constant.

ñ One can show by induction that the space requirement is

S(u) = O(u). Exercise.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 427/609



ñ Let the “real” recurrence relation be

S(k2) = (k+ 1)S(k)+ c1 · k; S(4) = c2

ñ Replacing S(k) by R(k) := S(k)/c2 gives the recurrence

R(k2) = (k+ 1)R(k)+ ck; R(4) = 1

where c = c1/c2 < 1.

ñ Now, we show R(k) ≤ k− 2 for squares k ≥ 4.
ñ Obviously, this holds for k = 4.
ñ For k = `2 > 4 with ` integral we have

R(k) = (1+ `)R(`)+ c`
≤ (1+ `)(` − 2)+ ` ≤ k− 2

ñ This shows that R(k) and, hence, S(k) grows linearly.


	van Emde Boas Trees

