9 Union Find

Union Find Data Structure 2: Maintains a partition of disjoint
sets over elements.
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9 Union Find

Union Find Data Structure 2: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.
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9 Union Find

Union Find Data Structure 2: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

» P.find(x): Given a handle for an element Xx; find the set
that contains x. Returns a representative/identifier for this
set.
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9 Union Find

Union Find Data Structure 2: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

» P.find(x): Given a handle for an element x; find the set
that contains x. Returns a representative/identifier for this
set.

» P.union(x, y): Given two elements x, and 7y that are
currently in sets Sy and S, respectively, the function
replaces Sy and S, by Sx U S, and returns an identifier for
the new set.
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9 Union Find

Applications:

» Keep track of the connected components of a dynamic
graph that changes due to insertion of nodes and edges.
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9 Union Find

Applications:
» Keep track of the connected components of a dynamic

graph that changes due to insertion of nodes and edges.

» Kruskals Minimum Spanning Tree Algorithm
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9 Union Find

Algorithm 1 Kruskal-MST(G = (V,E),w)

A< 0;
forall v € V do
v.set — P.makeset(v.label)
sort edges in non-decreasing order of weight w
: for all (u,v) € E in non-decreasing order do
if P.find(u.set) # P.find(v.set) then
A—Au{(u,v)}
P.union(u. set, v. set)
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

» makeset(x) can be performed in constant time.
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

» makeset(x) can be performed in constant time.

» find(x) can be performed in constant time.
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List Implementation

union(x, y)
> Determine sets Sy and S,,.
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List Implementation

union(x, y)
> Determine sets Sy and S,,.

» Traverse the smaller list (say Sy), and change all backward
pointers to the head of list Sy.
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List Implementation

union(x, y)
> Determine sets Sy and S,,.

» Traverse the smaller list (say Sy), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
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List Implementation

union(x, y)
> Determine sets Sy and S,,.

Traverse the smaller list (say Sy), and change all backward
pointers to the head of list Sy.

v

v

Insert list S, at the head of S.
Adjust the size-field of list Sy.

\4
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List Implementation

union(x, y)
> Determine sets Sy and S,,.

» Traverse the smaller list (say Sy), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
> Adjust the size-field of list S.

> Time: min{|Sx/|, [Sy[}.
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List Implementation
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List Implementation

Running times:
» find(x): constant
» makeset(x): constant

» union(x, y): O(n), where n denotes the number of
elements contained in the set system.
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List Implementation

Lemma 1
The list implementation for the ADT union find fulfills the
following amortized time bounds:

> find(x): O(1).
» makeset(x): O(logn).
» union(x,y): O(1).
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The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.
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The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.
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The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

» Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.
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The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

» Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

» Whenever for an operation the actual cost exceeds the
amortized time bound, the difference is charged to bank
accounts of some of the elements involved.
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The Accounting Method for Amortized Time Bounds

There is a bank account for every element in the data
structure.

Initially the balance on all accounts is zero.

Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

Whenever for an operation the actual cost exceeds the
amortized time bound, the difference is charged to bank
accounts of some of the elements involved.

If we can find a charging scheme that guarantees that
balances always stay positive the amortized time bounds
are proven.
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List Implementation

» For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.
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List Implementation

» For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most O(logn) to an element
(regardless of the request sequence).
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List Implementation

» For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most O(logn) to an element
(regardless of the request sequence).

» For each element a makeset operation occurs as the first
operation involving this element.
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List Implementation

» For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most O(logn) to an element
(regardless of the request sequence).

» For each element a makeset operation occurs as the first
operation involving this element.

» We inflate the amortized cost of the makeset-operation to
O(logn), i.e., at this point we fill the bank account of the
element to ©(logn).
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List Implementation

» For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most O(logn) to an element
(regardless of the request sequence).

» For each element a makeset operation occurs as the first
operation involving this element.

» We inflate the amortized cost of the makeset-operation to
O(logn), i.e., at this point we fill the bank account of the
element to ©(logn).

» Later operations charge the account but the balance never
drops below zero.
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List Implementation

makeset(x) : The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).
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List Implementation

makeset(x) : The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and
the actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).
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List Implementation

makeset(x) : The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and
the actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):
» If Sx = S, the cost is constant; no bank accounts change.
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List Implementation

makeset(x) : The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and
the actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):
» If Sx = S, the cost is constant; no bank accounts change.

» Otw. the actual cost is O(min{[Sx/|, |Sy[}).

‘m EADS 9 Union Find =)
© Ernst Mayr, Harald Réacke



List Implementation

makeset(x) : The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and
the actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):
» If Sx = S, the cost is constant; no bank accounts change.
» Otw. the actual cost is O(min{[Sx/|, |Sy[}).

» Assume wlog. that Sy is the smaller set; let ¢ denote the
hidden constant, i.e., the actual cost is at most ¢ - |Sx]|.
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List Implementation

makeset(x) : The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and
the actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):

\4

If Sx = S, the cost is constant; no bank accounts change.

\4

Otw. the actual cost is O(min{|Sx|, [Sy[}).

v

Assume wlog. that Sy is the smaller set; let ¢ denote the
hidden constant, i.e., the actual cost is at most ¢ - |Sx]|.

\4

Charge c to every element in set Sy.
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List Implementation

Lemma 2
An element is charged at most |log, n] times, where n is the
total number of elements in the set system.

‘m EADS 9 Union Find =)
© Ernst Mayr, Harald Réacke



List Implementation

Lemma 2
An element is charged at most |log, n] times, where n is the
total number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in
x’s set doubles. This can happen at most |logn] times.
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Implementation via Trees

» Maintain nodes of a set in a tree.
» The root of the tree is the label of the set.

» Only pointer to parent exists; we cannot list all elements of
a given set.
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Implementation via Trees

v

Maintain nodes of a set in a tree.
The root of the tree is the label of the set.

v

v

Only pointer to parent exists; we cannot list all elements of

a given set.
» Example:
(19 (6) (19)
(12 O (9) @ 19 @3
@ ONCEY,
®

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16, 19, 23}.
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Implementation via Trees

makeset(x)
» Create a singleton tree. Return pointer to the root.
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Implementation via Trees

makeset(x)
» Create a singleton tree. Return pointer to the root.
> Time: O(1).
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Implementation via Trees

makeset(x)
» Create a singleton tree. Return pointer to the root.
> Time: O(1).

find (x)

» Start at element x in the tree. Go upwards until you reach
the root.
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Implementation via Trees

makeset(x)
» Create a singleton tree. Return pointer to the root.
> Time: O(1).

find (x)

» Start at element x in the tree. Go upwards until you reach
the root.

» Time: O(level(x)), where level(x) is the distance of
element x to the root in its tree. Not constant.

‘m EADS 9 Union Find =)
© Ernst Mayr, Harald Réacke



Implementation via Trees

To support union we store the size of a tree in its root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)

» Perform a < find(x); b — find(y). Then: link(a, b).
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a < find(x); b — find(y). Then: link(a, b).

» link(a, b) attaches the smaller tree as the child of the larger.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a < find(x); b — find(y). Then: link(a, b).

» link(a, b) attaches the smaller tree as the child of the larger.

» In addition it updates the size-field of the new root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a < find(x); b — find(y). Then: link(a, b).

» link(a, b) attaches the smaller tree as the child of the larger.

» In addition it updates the size-field of the new root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a < find(x); b — find(y). Then: link(a, b).

» link(a, b) attaches the smaller tree as the child of the larger.

» In addition it updates the size-field of the new root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a < find(x); b — find(y). Then: link(a, b).

» link(a, b) attaches the smaller tree as the child of the larger.

» In addition it updates the size-field of the new root.

» Time: constant for link(a, b) plus two find-operations.

‘m EADS 9 Union Find =) =
© Ernst Mayr, Harald Réacke



Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for find(x) is O(logn).
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Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) = 2 size(c), where size

denotes the value of the size-field right after the operation.
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Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) = 2 size(c), where size
denotes the value of the size-field right after the operation.

» After that the value of size(c) stays fixed, while the value of
size(p) may still increase.
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Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) = 2 size(c), where size
denotes the value of the size-field right after the operation.

» After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

» Hence, at any point in time a tree fulfills size(p) > 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.
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Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) = 2 size(c), where size
denotes the value of the size-field right after the operation.

» After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

» Hence, at any point in time a tree fulfills size(p) > 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

O
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Path Compression
find(x):

» Go upward until you find the root.
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

‘m EADS 9 Union Find
© Ernst Mayr, Harald Réacke



Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.

4
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.

4
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.

4
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.

4
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.

4
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Path Compression
find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.
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Path Compression
find(x):
» Go upward until you find the root.
» Re-attach all visited nodes as children of the root.

» Speeds up successive find-operations.

> Note that the size-fields now only give an upper bound on
the size of a sub-tree.
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Path Compression

Asymptotically the cost for a find-operation does not increase
due to the path compression heuristic.
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Path Compression

Asymptotically the cost for a find-operation does not increase
due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on
the running time. It can still happen that a find-operation takes
time O(logn).
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Amortized Analysis

Definitions:
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Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
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Amortized Analysis

Definitions:

» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.

» rank(v) = |[log(size(v))].
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Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
» rank(v) = |[log(size(v))].

» = size(v) > 2rank(),
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Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
» rank(v) = |log(size(v))]|.
» = size(v) > 2rank(),
Lemma 4

The rank of a parent must be strictly larger than the rank of a
child.

‘m EADS 9 Union Find =)
© Ernst Mayr, Harald Réacke



Amortized Analysis

Lemma 5

There are at most n/25 nodes of rank s.
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Amortized Analysis

Lemma 5
There are at most n/2° nodes of rank s.

Proof.

> Let’s say a node v sees node x if v is in x’s sub-tree at the
time that x becomes a child.
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Amortized Analysis

Lemma 5
There are at most n/2° nodes of rank s.

Proof.
> Let’s say a node v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

» A node v sees at most one node of rank s during the
running time of the algorithm.
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Amortized Analysis

Lemma 5
There are at most n/2° nodes of rank s.

Proof.

» Let’s say a hode v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

» A node v sees at most one node of rank s during the
running time of the algorithm.

» This holds because the rank-sequence of the roots of the

different trees that contain v during the running time of the
algorithm is a strictly increasing sequence.
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Amortized Analysis

Lemma 5
There are at most n/2° nodes of rank s.

Proof.

» Let’s say a hode v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

» A node v sees at most one node of rank s during the
running time of the algorithm.

» This holds because the rank-sequence of the roots of the
different trees that contain v during the running time of the
algorithm is a strictly increasing sequence.

» Hence, every node sees at most one rank s node, but every
rank s node is seen by at least 25 different nodes. 0
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Amortized Analysis

We define

L 1
tow(@) =7 Srow(i-1)

ifi=0
otw.
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Amortized Analysis

We define
; 1 ifi=0 ; 2 }i times
tow(i) := { otow(i-1) o, tow(i) = 2
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Amortized Analysis

We define
. 1 ifi=0 ;
tow(i) := 5( Stow(icD) o, tow(i) = 22

and
log®(n) := min{i | tow(i) = n} .

22, .
2?2 }1t|mes
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Amortized Analysis

We define
tow(i) = { ;mme :t\‘; 0 owiy = 22 Ji times
and
log™(n) := min{i | tow(i) = n} .
Theorem 6

Union find with path compression fulfills the following amortized
running times:

» makeset(x) : O(log* (n))
» find(x) : O(log™* (n))
» union(x, y) : O(log™(n))
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Amortized Analysis

In the following we assume n > 2.
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Amortized Analysis

In the following we assume n > 2.

rank-group:

» A node with rank rank(v) is in rank group log™* (rank(v)).
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Amortized Analysis

In the following we assume n > 2.
rank-group:
» A node with rank rank(v) is in rank group log™* (rank(v)).

» The rank-group g = 0 contains only nodes with rank 0 or
rank 1.
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Amortized Analysis

In the following we assume n > 2.

rank-group:

» A node with rank rank(v) is in rank group log™* (rank(v)).

» The rank-group g = 0 contains only nodes with rank 0 or
rank 1.

» A rank group g = 1 contains ranks
tow(g—1) +1,...,tow(g).
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Amortized Analysis

In the following we assume n > 2.

rank-group:

» A node with rank rank(v) is in rank group log™* (rank(v)).

» The rank-group g = 0 contains only nodes with rank 0 or
rank 1.

» A rank group g = 1 contains ranks
tow(g—1) +1,...,tow(g).

» The maximum non-empty rank group is
log*([logn]) <log™(n) — 1 (which holds for n > 2).

‘m EADS 9 Union Find =)
© Ernst Mayr, Harald Réacke



Amortized Analysis

In the following we assume n > 2.

rank-group:

» A node with rank rank(v) is in rank group log™* (rank(v)).

» The rank-group g = 0 contains only nodes with rank 0 or
rank 1.

» A rank group g = 1 contains ranks
tow(g—1) +1,...,tow(g).

» The maximum non-empty rank group is
log*([logn]) <log™(n) — 1 (which holds for n > 2).

» Hence, the total number of rank-groups is at most log™ n.
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Amortized Analysis
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Amortized Analysis

Accounting Scheme:
» create an account for every find-operation
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Amortized Analysis

Accounting Scheme:
» create an account for every find-operation

» create an account for every node v
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Amortized Analysis

Accounting Scheme:
» create an account for every find-operation
» create an account for every node v

The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:
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Amortized Analysis

Accounting Scheme:
» create an account for every find-operation
» create an account for every node v

The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the
find-account.
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Amortized Analysis

Accounting Scheme:

» create an account for every find-operation

> create an account for every node v
The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the

find-account.

> If the group-number of rank(v) is the same as that of
rank(parent[v]) (before starting path compression) we
charge the cost to the node-account of v.
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Amortized Analysis

Accounting Scheme:

» create an account for every find-operation

> create an account for every node v
The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the

find-account.

> If the group-number of rank(v) is the same as that of
rank(parent[v]) (before starting path compression) we
charge the cost to the node-account of v.

» Otherwise we charge the cost to the find-account.
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Amortized Analysis

Observations:
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Amortized Analysis

Observations:

» A find-account is charged at most log™ (1) times (once for
the root and at most log* (1) — 1 times when increasing the
rank-group).
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Amortized Analysis

Observations:

» A find-account is charged at most log™ (1) times (once for
the root and at most log* (1) — 1 times when increasing the
rank-group).

» After a node v is charged its parent-edge is re-assigned.
The rank of the parent strictly increases.
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Amortized Analysis

Observations:

» A find-account is charged at most log™ (1) times (once for
the root and at most log* (1) — 1 times when increasing the
rank-group).

» After a node v is charged its parent-edge is re-assigned.
The rank of the parent strictly increases.

» After some charges to v the parent will be in a larger
rank-group. = v will never be charged again.
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Amortized Analysis

Observations:

» A find-account is charged at most log™ (1) times (once for
the root and at most log* (1) — 1 times when increasing the
rank-group).

» After a node v is charged its parent-edge is re-assigned.
The rank of the parent strictly increases.

» After some charges to v the parent will be in a larger
rank-group. = v will never be charged again.

» The total charge made to a node in rank-group g is at most
tow(g) —tow(g — 1) — 1 < tow(g).
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Amortized Analysis

What is the total charge made to nodes?
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Amortized Analysis

What is the total charge made to nodes?

» The total charge is at most

> n(g) - tow(g) ,
g

where n(g) is the number of nodes in group g.
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Amortized Analysis

For g = 1 we have

n(g)
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Amortized Analysis

For g = 1 we have

tow(g)

n(g) < >

s=tow(g—1)+1

N
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Amortized Analysis

For g = 1 we have

tow(g) tow(g)—tow(g—-1)-1
_ 1
n(g) = Z ? ~ 2tow(g-1)+1 ?
s=tow(g—1)+1 s=0
9 Union Find =] =

© Ernst Mayr, Harald Rédcke



Amortized Analysis

For g = 1 we have

tow(g) n n tow(g)—tow(g—1)-1 1
n(g) = Z ? = 2tow(g—1)+1 ?
s=tow(g—1)+1 s=0
n o1
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Amortized Analysis

For g = 1 we have

tow(g) n n tow(g)—tow(g—1)-1 1
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Amortized Analysis

For g = 1 we have

tow(g) n n tow(g)—tow(g—1)-1 1
n(g) = Z ? = 2tow(g—1)+1 ?
s=tow(g—1)+1 s=0
n o1 n

= Dtow(g—1)+1 Z ? tow(g-1)+1 2

< n

- 2t0w(g—1)
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Amortized Analysis

For g = 1 we have
tow(g) tow(g)—tow(g—-1)-1 1

n(g) < > n

= tow(g—1)+1 s
s=tow(g—1)+1 2 2

w3

s=0

1 n ’
? 2tow(g-1)+1 ’

< n
— 2tow(g-1)+1

||Mg

n Tl
<
- 2t0w(g—1) tow(g)

,
i i &
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Amortized Analysis

For g = 1 we have

tow(g) n n tow(g)—tow(g—1)-1 1
n(g) = Z ? - Dtow(g-1)+1
s=tow(g—1)+1

s
s=0 2

3

n 1 n
= Stow(g-1)+1 g 25 = Stow(g-D+1 2
n . n
T 2twlg-l)  tow(g)
Hence,
> n(g) tow(g)
g
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Amortized Analysis
For g = 1 we have

tow(g)
n(g) < >

s=tow(g—1)+1

< n
— 2tow(g-1)+1

n

n n

3

1 n

2s = 2t0w(g—1)+1

tow(g)—tow(g—1)-1

s=0

Z ? Dtow(g—1)+1 $2

7’l

2t0w(g—1) =

Hence,

9

> n(g) tow(g) < n(0) tow(0) + >

tow(g)

g=1

n(g) tow(g)

1

25
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Amortized Analysis

For g = 1 we have

tow(g) n n tow(g)—tow(g—1)-1 1
n(g) = Z ? - Dtow(g-1)+1 Z s
s=tow(g—-1)+1 s=0
n o1 n
= Dtow(g-D+1 Z ? Dtow(g—1)+1 $2
n n
= otow(g-1) — tow(g)

Hence,

> n(g) tow(g) < n(0) tow(0) + >

n(g) tow(g) < nlog*(n)
g

g=1
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Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.
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Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.

This means if we inflate the cost of makeset to log™ n and add
this to the node account of v then the balances of all node
accounts will sum up to a positive value (this is sufficient to
obtain an amortized bound).
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Amortized Analysis
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Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log* n.
(Here, we consider the average running time of m operations on
at most n elements).
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Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log* n.
(Here, we consider the average running time of m operations on
at most n elements).

There is also a lower bound of Q(x(m,n)).
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Amortized Analysis

y+1 ifx=0
Alx,y)=1 Alx-1,1) ify=0
Alx—-1,A(x,y —1)) otw.

a(m,n) =min{i > 1: A(i,|m/n]) > logn}
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Amortized Analysis

y+1 ifx=0
Alx,y)=1 Alx-1,1) ify=0
Alx—-1,A(x,y —1)) otw.

a(m,n) =min{i > 1: A(i,|m/n]) > logn}

\4

A0, y) =y +1
A(l,y) =y +2
A(2,y)=2y+3
A(3,y) = 27+3 3

_ a2t
AM4,y)= 2 3

y+3 times

v

v

v

v
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