
9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

ñ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

ñ P. find(x): Given a handle for an element x; find the set

that contains x. Returns a representative/identifier for this

set.

ñ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.

EADS

© Ernst Mayr, Harald Räcke 363

9 Union Find

Applications:

ñ Keep track of the connected components of a dynamic

graph that changes due to insertion of nodes and edges.

ñ Kruskals Minimum Spanning Tree Algorithm

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 364

9 Union Find

Algorithm 1 Kruskal-MST(G = (V , E),w)
1: A← �;

2: for all v ∈ V do

3: v. set← P.makeset(v. label)
4: sort edges in non-decreasing order of weight w
5: for all (u,v) ∈ E in non-decreasing order do

6: if P.find(u. set) ≠ P.find(v. set) then

7: A← A∪ {(u,v)}
8: P.union(u. set, v. set)

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 365

List Implementation

ñ The elements of a set are stored in a list; each node has a

backward pointer to the head.

ñ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

∅

ñ makeset(x) can be performed in constant time.

ñ find(x) can be performed in constant time.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 366

List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sx.

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 367

List Implementation

Sx

7

a b c d x f g

∅

Sy
4

h i y j

∅

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 368

List Implementation

Sx

11

a b c d x f g

∅

Sy
4

h i y j

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 368

List Implementation

Running times:

ñ find(x): constant

ñ makeset(x): constant

ñ union(x,y): O(n), where n denotes the number of

elements contained in the set system.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 369

List Implementation

Lemma 1

The list implementation for the ADT union find fulfills the

following amortized time bounds:

ñ find(x): O(1).
ñ makeset(x): O(logn).
ñ union(x,y): O(1).

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 370

The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds

are proven.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 371

List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 372

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and

the actual cost to be the same. Hence, this operation does not

change any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 373

List Implementation

Lemma 2

An element is charged at most blog2nc times, where n is the

total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in

x’s set doubles. This can happen at most blognc times.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 374

Implementation via Trees

ñ Maintain nodes of a set in a tree.

ñ The root of the tree is the label of the set.

ñ Only pointer to parent exists; we cannot list all elements of

a given set.

ñ Example:
10

12 5

2

6

9

3

8

14 17

7

16

19 23

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 375

Implementation via Trees

makeset(x)
ñ Create a singleton tree. Return pointer to the root.

ñ Time: O(1).

find(x)
ñ Start at element x in the tree. Go upwards until you reach

the root.

ñ Time: O(level(x)), where level(x) is the distance of

element x to the root in its tree. Not constant.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 376

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

11

1

1

2

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 377

Implementation via Trees

Lemma 3

The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

ñ When we attach a tree with root c to become a child of a

tree with root p, then size(p) ≥ 2 size(c), where size

denotes the value of the size-field right after the operation.

ñ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

ñ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 378

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

2

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

One could change the algorithm to
update the size-fields. This could
be done without asymptotically af-
fecting the running time.

However, the only size-field that is
actually required is the field at the
root, which is always correct.

We will only use the other size-
fields for the proof of Theorem 6.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 379

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12

2

5

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

2

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

One could change the algorithm to
update the size-fields. This could
be done without asymptotically af-
fecting the running time.

However, the only size-field that is
actually required is the field at the
root, which is always correct.

We will only use the other size-
fields for the proof of Theorem 6.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 379

Path Compression

Asymptotically the cost for a find-operation does not increase

due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on

the running time. It can still happen that a find-operation takes

time O(logn).

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 380

Amortized Analysis

Definitions:

ñ size(v) Í the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or

the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the

case that there are no find-operations.

ñ rank(v) Í blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 4

The rank of a parent must be strictly larger than the rank of a

child.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 381

Amortized Analysis

Lemma 5

There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees node x if v is in x’s sub-tree at the

time that x becomes a child.

ñ A node v sees at most one node of rank s during the

running time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contain v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 382

Amortized Analysis

We define

tow(i) :=
{

1 if i = 0

2tow(i−1) otw.
tow(i) = 222222

i times

and

log∗(n) :=min{i | tow(i) ≥ n} .

Theorem 6

Union find with path compression fulfills the following amortized

running times:

ñ makeset(x) : O(log∗(n))
ñ find(x) : O(log∗(n))
ñ union(x,y) : O(log∗(n))

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 383

Amortized Analysis

In the following we assume n ≥ 2.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 2).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 384

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 385

Amortized Analysis

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned.

The rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1)− 1 ≤ tow(g).

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 386

Amortized Analysis

What is the total charge made to nodes?

ñ The total charge is at most∑
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 387

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑
s=0

1
2s

≤ n
2tow(g−1)+1

∞∑
s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑
g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 388

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 389

Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 390

Amortized Analysis

A(x,y) =


y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) =min{i ≥ 1 : A(i, bm/nc) ≥ logn}

ñ A(0, y) = y + 1

ñ A(1, y) = y + 2

ñ A(2, y) = 2y + 3

ñ A(3, y) = 2y+3 − 3

ñ A(4, y) = 2222︸ ︷︷ ︸
y+3 times

−3

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 391

Union Find

Bibliography

[CLRS90a] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest:
Introduction to Algorithms (1st ed.),
MIT Press and McGraw-Hill, 1990

[CLRS90b] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (2nd ed.),
MIT Press and McGraw-Hill, 2001

[CLRS90c] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[AHU74] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22
of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but
neither in [CLRS90b] in nor in [CLRS90c]. The latter books contains a more involved analysis that gives
a better bound than O(log∗ n).

A description of the O(log∗)-bound can also be found in Chapter 4.8 of [AHU74].

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 392

	Union Find

