A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

M <0

repeat
let 7 = {P1,..., Py} be maximal set of
vertex-disjoint, shortest augmenting path w.r.t. M.
M~M& (PruU---UPy)

until 7 =0

return M

SO R

We call one iteration of the repeat-loop a phase of the algorithm.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Réacke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

‘m EADS 20 The Hopcroft-Karp Algorithm =)
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist

IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.
» The connected components of G are cycles and paths.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Réacke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist

IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M @ M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
©Ernst Mayr, Harald Racke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

| 2

Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.
The connected components of G are cycles and paths.

The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

T

EADS 20 The Hopcroft-Karp Algorithm =) =
©Ernst Mayr, Harald Racke

Analysis

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

T

EADS 20 The Hopcroft-Karp Algorithm &
© Ernst Mayr, Harald Réacke

Analysis

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

»Me<MeoPLU---UP,)=Me&P,®---&Pg.

T

EADS 20 The Hopcroft-Karp Algorithm &
© Ernst Mayr, Harald Réacke

Analysis

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

»Me<MeoPLU---UP,)=Me&P,®---&Pg.

» Let P be an augmenting path in M’.

20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Réacke

Analysis

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).
»Me<MeoPLU---UP,)=Me&P,®---&Pg.

» Let P be an augmenting path in M’.

Lemma 5
The set A Mo (M ®P)=(PLU---UPyg) ®P contains at least

(k + 1)¥ edges.

20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Réacke

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

T

EADS 20 The Hopcroft-Karp Algorithm & =
© Ernst Mayr, Harald Réacke

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M'| = |[M| + k + 1.

T

EADS

20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Réacke

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M'| = |[M| + k + 1.

» Each of these paths is of length at least £.

T

EADS 20 The Hopcroft-Karp Algorithm =) =
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Réacke

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,..., Px}.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,..., Px}.
» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,..., Px}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.
» This edge is not contained in A.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Rédcke

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,..., Px}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.

» This edge is not contained in A.

» Hence, |A| < k€ + |P| - 1.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Racke

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,..., Px}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.

» This edge is not contained in A.

» Hence, |A| < k€ + |P| - 1.

» The lower bound on |A| gives (k+1)¥ < |A| < kf + |P| -1,
and hence |P| > ¥ + 1.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
©Ernst Mayr, Harald Racke

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges
then the cardinality of the maximum matching is of size at most

A4
M| + 757

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Réacke

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most
V]

IM] + /+1°

Proof.

The symmetric difference between M and M* contains

IM*| — |[M| vertex-disjoint augmenting paths. Each of these

paths contains at least £ + 1 vertices. Hence, there can be at

1vI
most - of them.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Réacke

Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

m EADS 20 The Hopcroft-Karp Algorithm =)
© Ernst Mayr, Harald Réacke

Analysis

Lemma 7

The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.
> After iteration [/|V]] the length of a shortest augmenting
path must be at least |[/|V]] +1 = /|V].

» Hence, there can be at most |V |/(y/|V|+ 1) < +/|V]|
additional augmentations.

‘m EADS 20 The Hopcroft-Karp Algorithm =
© Ernst Mayr, Harald Réacke

Analysis

Lemma 8
One phase of the Hopcroft-Karp algorithm can be implemented
in time O (m).

» Do a breadth first search starting at all free vertices in the
left side L.

(alternatively add a super-startnode; connect it to all free vertices
in L and start breadth first search from there)

» The search stops when reaching a free vertex. However, the
current level of the BFS tree is still finished in order to find a
set F of free vertices (on the right side) that can be reached
via shortest augmenting paths.

‘m EADS 20 The Hopcroft-Karp Algorithm = =
© Ernst Mayr, Harald Racke

Analysis

>

Then a maximal set of shortest path from the leftmost layer
of the tree construction to nodes in F needs to be
computed.

Any such path must visit the layers of the BFS-tree from left
to right.

To go from an odd layer to an even layer it must use a
matching edge.

To go from an even layer to an odd layer edge it can use
edges in the BFS-tree or edges that have been ignored
during BFS-tree construction.

We direct all edges btw. an even node in some layer £ to an
odd node in layer £ + 1 from left to right.

A DFS search in the resulting graph gives us a maximal set
of vertex disjoint path from left to right in the resulting
graph.

m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Réacke

QP 9
\/

O000O0 O OO0

Q QOO OO QO QO
N/ A
e Q

C Qmw
Q9 9 Q ©
\ / \ /

8. o .0

“Qm w .
PR “1
‘
.
‘ . Re

QOQQ&QOOQ

'

Q@CCC C.,:CC
/\ <t <

\J
.
.
-
)
|)
.
Y

o

QP D o

\ TN
ST

A m w *
> -
AR R4
P ! o’
. R PS
"

O30 O T 0O OO0

O Q O C C C C C
AV

~O—Ox

