6 Recurrences

Algorlthm 2 mergesort(listL)

. n — size(L)
cifn<1returnlL

: Ly = L[1---1%]]

i Ly — L[[J + 1 -n]
: mergesort(Ll)

: mergesort(Ly)

: L — merge(Ly,L>)

. return L

OO\IG\U'IAUJN—'

© Ernst Mayr, Harald Réacke

6 Recurrences

Algorithm 2 mergesort(listL)

1
2
3
4
5:
6
7
8

. n — size(L)
cifn<1returnlL

Ly = L[1--- 3]

: Ly = L[L3]+1:--n]

: mergesort(Ly)
: L — merge(Ly,L>)
: return L

mergesort(Ly)

This algorithm requires

T(n)=T(|

3 =713+ =2r([]) o0

comparisons when n > 1 and 0 comparisons when n < 1.

T

EADS

6 Recurrences &

© Ernst Mayr, Harald Rédcke

Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

m EADS 6 Recurrences =] =
© Ernst Mayr, Harald Réacke

Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

For this we need to solve the recurrence.

‘m EADS 6 Recurrences =] =
© Ernst Mayr, Harald Réacke

Methods for Solving Recurrences

1. Guessing+Induction
Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.
2. Master Theorem

For a lot of recurrences that appear in the analysis of
algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this
method.

T

EADS 6 Recurrences &
©Ernst Mayr, Harald Racke

Methods for Solving Recurrences

4. Generating Functions
A more general technique that allows to solve certain types
of linear inhomogenous relations and also sometimes
non-linear recurrence relations.

5. Transformation of the Recurrence
Sometimes one can transform the given recurrence relations
so that it e.g. becomes linear and can therefore be solved
with one of the other techniques.

T

EADS 6 Recurrences & =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(5) +cn n=2
0 otherwise

T(n) < {

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(5) +cn n=2
0 otherwise

T(n) < {

One way of solving such a recurrence is to guess a solution, and
check that it is correct by plugging it in.

‘m EADS 6.1 Guessing+Induction = =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d.

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§) +cn

m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§> +cn

< Z(dglogg) +cn

m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then
n
T(n) < 2T(§> +cn
n n
< Z(dilog E) +cn

=dn(logn-1)+cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§> +cn
< Z(dglogg) +cn

=dn(logn-1)+cn

=dnlogn+ (c—d)n

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T(§> +cn
n n
< 2(d§10g5> +cn
=dn(logn-1)+cn

=dnlogn+ (c—d)n
<dnlogn

if we choose d > c.

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T(§> +cn
n n
< 2<d§10g§) +cn
=dn(logn-1)+cn

=dnlogn+ (c—d)n
<dnlogn

if we choose d > c.

Formally one would make an induction proof, where the above is
the induction step. The base case is usually trivial.

‘m EADS 6.1 Guessing+Induction = =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

T(n) < {

2T(5) +cn n=>16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.

T(n) < {

2T(5) +cn n=>16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n)

IA

2T(5) +cn n=>16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 <n <16):

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < ZT(%) +cn

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < 2T(%) +cn

< Z(dglog%) +cn

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < 2T(%) +cn
< Z(dglog%) +cn

=dn(logn—-1) +cn

6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < 2T(%) +cn
< Z(dglog%) +cn

=dn(logn—-1) +cn

=dnlogn+ (c—d)n

6.1 Guessing+Induction T(n) < { 2T(3) +cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.

> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(E> +cn
n n
< 2(d§10g§> +cn
=dn(logn—-1) +cn

=dnlogn+ (c—d)n
<dnlogn

6.1 Guessing+Induction T(n) < { 2T(3) +cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.

> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(E> +cn
n n
< 2(d§10g§> +cn
=dn(logn—-1) +cn

=dnlogn+ (c—d)n
<dnlogn

Hence, statement is true if we choose d = c.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

m EADS 6.1 Guessing+Induction =) =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([53]) +cn n =16
b otherwise

T(n) < {

‘m EADS 6.1 Guessing+Induction = =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([52]) +cn n =16
T(n) < 1z D _
b otherwise
Note that we can do this as for constant-sized inputs the running
time is always some constant (b in the above case).

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n)

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Rédcke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([g]) +cn

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < ZT([Q]) +cn

< 2(d[%1 log [g]) +cn

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < ZT([Q]) +cn

< 2(d[%1 log [g]) +cn

m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

—_
SE
—
IA
SE
b
—

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

T

EADS
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

[3]=<3+1| <2(d(n/2+1)log(n/2+1)) +cn
Lils<qgn

.
6.1 Guessing+Induction

© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get

T(n) < ZT([g]) +cn

< 2(d[%1 log [g]) +cn

[3]<5+1] <2(d(n/2+1)log(n/2 +1)) +cn
9

n lsi =

5 + 6N sdnlog(lGn) +2dlogn +cn

.
6.1 Guessing+Induction

© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([g]) +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

+1<n| <dnlog (%n) +2dlogn +cn

n
2

log %n =logn + (log9 — 4) ‘

‘m EADS 6.1 Guessing+Induction
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

n
2

+1<n| <dnlog (l%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

n
2

+1<n| <dnlog (l%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

n
2

+1<3n| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 — 3.5)dn +cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< 2(d[%1 log [g]) +cn

[2]<%+1] <2(dn/2+1)log(n/2+1)) +cn

n <39 9

7+l=gn| <dnlog (I—Gn) +2dlogn + cn
log%n=logn+<log9—4)‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 — 3.5)dn +cn
<dnlogn —0.33dn +cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [g]) +cn

[2]=%+1] <2(d(n/2+1)log(n/2 + 1)) +cn

Z+1<%n| <dnlog (%n) +2dlogn +cn
log%n=logn+<log9—4)‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 — 3.5)dn +cn
<dnlogn —0.33dn +cn
<dnlogn

for a suitable choice of d.

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke

6.2 Master Theorem

Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence n

T(n) = aT(E) + f(n) .

Case 1.
If f(n) = O(n'°8(@=€) then T(n) = O(nlogra),

Case 2.
If f(n) = (N8 @ 1ogk n) then T(n) = O ('8 21ogk* 1 n),
k=0.

Case 3.
If f(n) = Q(nl°8@+€) and for sufficiently large n

af(%) < cf(n) for some constant c <1 then T(n) = O(f(n)).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

®

m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

=
g

@
1

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

@
1

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

6.2 Master Theorem

This gives
log, n—1

T(n) =nl&a 4 3 a%(%))

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

T(n) _ nlogb a

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1

T -l =3 aif(r)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1

T -l =3 aif(r)

i=0
log, n—1

¢ 3 ai

i=0

IA

n

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,
log, n—-1 n
T(n) -nlo&rd = alf<ﬁ>
i=0
log, n—1

logy, a—€
(n
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogh u)—i = peig—i |

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — Cnlogb a—e Z (be)l

i=0

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — Cnlogb a—e Z (be)l

i=0

k+1,1
zl Oq q-1

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0
logy n-1 logy, a—e
<cC a bi
i=0
log, n—1]
p-ilogpa—€) _ pei(plogpay—i — peig—i I — cnlogb a—e Z (be)l
i=0
gktl-1 | _ log, a—€ belogbn -1) bE -1
Stoai=4t|=cn (/()

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — cnlogb a—e Z (be)l

i=0

Zl oq ’:1;1 _ cnlogba—E(belogbn _ 1)/(be -1)
= cnlo8a€(n€ —1)/(b° - 1)

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

T(n) —

-

i(logy a—e)

— bei(blogb u)—i

zl ()q

T

EADS

© Ernst Mayr,

Harald Racke

log, n—-1 n
e a3
i=0
logy n-1 logy, a—e
<cC a bi
i=0
log, n—1]
- peia-i| = cnloBra=c N (p€)!
i=0
’:1;1 _ cnlogb a—E(beloghn _ 1)/(be -1)
= cnlo8ra=€(n€ — 1)/ (b - 1)
¢ logy, a(.,€ €
= b —
e_1" (n®-1)/(n%)
6.2 Master Theorem =) =

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0
log, n—1 log, a—e
<cC a bi
i=0
log, n—1
— _ . i P log, a—¢ €\l
p—illogy a—e) :ba(blogba) Lo peig-i| = cn b Z (b)
i=0
gftl-1 | _ log, a—€ beloghn -1) bE -1
Stoai=4t|=cn (/()
= cnlo8ra=€(pc _ 1)/(b€ - 1)
¢ logy, a(.,€ €
= b —
e_1" (n®-1)/(n%)
Hence,
T(n) < (+ 1>nl°gh(“)
be -1
EADS 6.2 Master Theorem =) = =

T

© Ernst Mayr,

Harald Racke

Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—1 n
T -l =3 aif(r)
i=0
logyn-1 1\ logya—e
se 3 al(y)
i=0
log, n—1]
b—i(logha—e):bei(blogbu)—i:beia—i :cnIOgba_e Z (be)l
i=0

Zl 0‘1 i O cnlogba—E(beloghn _ 1)/(be -1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n9)

Hence,

T(n) < (+ 1>n1°gh(“) > T(n) = O(n'osra).

be -1

‘m EADS 6.2 Master Theorem =] = =
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

T(n) - nlogb a

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—-1

T(n) — nlogra = Z aif(%)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—-1 n
_ logpa _ i hid
T(n)—nosrd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a (bi>
i=0

IA

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
'LE 8b
<c > a i
i=0
log, n—1
=cnlogra X
i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: (n logy, a
[a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: (n logy, a
[a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

Hence,
T(n) = O(n'°% *log, n)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: in log, a
C a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

Hence,

T(n) = 08 log,n) |= T(n) = O(n'8<logn).

‘m EADS 6.2 Master Theorem =] = =
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

T(n) - nlogb a

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nosra = z af(bi)
i=0
log, n—-1

log, a
i n
2 i
=C a (bi>
i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Sh
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

Hence,
T(n) = Q(n'°8 %log, n)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

Hence,

T(n) = Q(n'°8 %log, n) ‘=> T(n) = Q(n%8 2]ogn).

‘m EADS 6.2 Master Theorem =] = =
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

T(n) — nlogra

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1

T(n) - nloma= Y av(%)

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.
logp n—1 n
o) —nlowd =3 aif (1)
i=0
log, n—1 logy a
(n n
sc 3 a(g) (o (5

i=0

)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Rédcke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 ’ n
1=

IA
9}
&H
—
e
N——
S
')
=
Q
—
o
o
o
N
—
=
2
~—
N———
~

n:h#=>€:logbn|

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1

T(n)-nlo&a =% aif(ﬁ)

i=0
log, a n k
) (o (53)
£-1

log, n—1
b\ K
n:h#=>€:logbn| = cnlosr @ Z (logb (ﬁ))

<c > ai<
i=0

=

i=0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 n
o) —nlowd =3 aif (1)
i=0
loghn—1' logy a
SIS () (o

i=0

- bl \ K
n:hyjﬁzlogbn‘ =C1’Llogbaz (logb<))

= cnlogra i 0 - i)k

i=0

bl

7))

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

n
(4)

n logy a n k
@(5r) " (1om (7))

b\ K
n:hgjﬁzlogbn‘ = cnlogr @ (logb (*))

logp n—1

T(n)-nl®a =% gif
i=0

log, n—-1

IA
o

|
o
:»—-
o
(=]
Ny
IS}
™MT
T
~~
S
|
o~
p—
3

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

n
(4)

n logy a n k
a(5) - (1o (57))

-1 b\ K
n:h”:E:logbn‘ = cnlosra Z (logb (ﬁ))
i=0

£-1
Cnlogba Z (_g _ l)k

i=0

logp n—1

T(n)-nl®a =% gif

IA
o

= Cnl()gb a ik |~ %#kﬂ

H.
LM s i
~

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 ’ n
T(n)-nlo&a =% alf(ﬁ)

i=0

IA
o
&N
—
=
~—
5
=)
S
N
—
(]
o
o
N
—
&
=
~—
N~
~

-1 btk
n:hgjﬁzlogbn‘ = cnlogr @ (logb (*))

|
o
S
—
o
[
=
S
—
S
I
-~
~
=~

= cnlogra Z ik
i=1
%nlogh u€k+1

u

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 n
_ ,logya _ i Rid
T(n)-nlogra = % af(bi)
i=0
log, n—1

S) (1)

i=0

- pi\\ K
n:hgjﬁzlogbn‘ = cnlosr @ Z (logb())
i=0

£-1
_ Cnlogba Z(’E—l)k

i=0
4
= cnlogra Z ik
i=1
c
~ nlogh u€k+1

= T(n)

= O(n'osr 4 1ogk 1 n).

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) <cf(n), forc < 1.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1

Ton) —nloswd =3 aif ()

i=0

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
Ton) —nloswd =3 aif ()
i=0
log, n—-1
< > cfm) +ome
i=0

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
_ plogya _ ig(N
T(n)—nosr = Z “f<bi>
i=0
log, n—-1
i logy, a
< c'f(n) + O(m°8r %)
i=0
7’ _gn+l
q<1:zl”=0qlzllq_q sﬁ

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
Ton) —nloswd =3 aif ()
i=0
log, n—-1
< > cifm) +0mnosna)
i=0
n i 1= n+1 1
a<1:3%,q" = llq_q < ﬁ Sl _Cf(n) + O(n'o8r)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1

L (n
T(n) —nlogra = Z alf<ﬁ>
i=0
log, n—-1
< > cifm) +0mnosna)
i=0
n i _an+1]- l
a<1:3%,q' = llq_q < ﬁ Sl _Cf(n) + O (n'°sr)
Hence,

T(n) <0(f(n))

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1
=St
2 ar(y)
log, n—-1
< > cifn)+omond
i=0
q<1:zg‘=0qi:171q_nq+1 Sﬁ Slicf(n)—‘ro(nlogba)
Hence,
T(n) <0(f(n)) > T(n) = ®(f(n))_‘

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
10001001|1 B

L

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
1000100 1|1 B

o

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

1

o

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101[0]1 A
1000100(1/1 B
0/0

Cl

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

o000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
10001[0011 B
1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101{1jo101 A
1000(1/0011 B

' J1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{1{101 01 A
1000(1/00 11 B

01000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
jo1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
Joo1000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
1001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
1100010011 B
/1001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
11000010011 B
11001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
/11001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
011001000

1

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
' Jo11001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
1011001000

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,9000100 11 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1
10001

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
100010

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

00

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010
00000O0O

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
00O

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
1T0001000O0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
1T0001000O0

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B x| A

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b bo‘x‘an ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn b% b%_l bo‘x‘an a% a%_l ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

Hence,

A-B=AB-2"+ (A1Bo + AgBy) - 27 + Ao - Bo

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + 7 - 27 4 Zo

o(1)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

o(1)
O(1)

© Ernst Mayr, Harald Réacke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

o(1)
O(1)
On)

© Ernst Mayr, Harald Réacke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

© Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A,B;)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z - 2" + Z; - 27 VA4
6.2 Master Theorem =) =

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

© Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z - 2" + Z; - 27 VA4
6.2 Master Theorem =) =

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + Z; - 27 VA4

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8: return Z - 2" + Z; - 27 VA4

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |JA| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n
T(n) = 4T<§) +0n) .

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT

» Case 1: f(n) = O(nlo8ra-¢) T(n) =
= @(nlogr a]ogk+!
=0(f(n))

» Case 2: f(n) = O(nl°%21ogkn) T(n)
» Case 3: f(n) = Q(nlosra+e) T(n)

) + f(n).

(nlogb a)

n)

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT)+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT)+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ®(n?) for our algorithm.

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT)+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ®(n?) for our algorithm.

= Not better then the “school method”.

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

‘m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)
O(1)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)
O(1)
O(n)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =

T

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =

T

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Aog, By) T(%)
7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =

T

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)
T(%) +0(n)

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

O(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)

T

EADS

6.2 Master Theorem

© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(%) +Om) .

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_

A huge improvement over the “school method”.

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Consider the recurrence relation:

coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

‘m EADS 6.3 The Characteristic Polynomial =) =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Observations:

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

‘m EADS 6.3 The Characteristic Polynomial =) =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

Approach:

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:

» First determine all solutions that satisfy recurrence relation.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Rédcke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Rédcke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
» First consider the homogenous case.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Racke

The Homogenous Case

The solution space

S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space.

© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial =)

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

‘m EADS 6.3 The Characteristic Polynomial =) =
© Ernst Mayr, Harald Réacke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

COAn+C1An_1 +Cp - An—Z + e+ An—k =0

for all n > k.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + AR e AR 2 =0

m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

characteristic polynomial P[A]

m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = ?\’i‘
is a solution to the recurrence relation.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A’f
is a solution to the recurrence relation.

Let Aq,..., Ak be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
XA + ALY + -+ oAy

is a solution for arbitrary values «j.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of

the form
0(1?\1l + 0(2?\51 + -+ O(k)\? .

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(1?\1l + 0(2?\5l + -+ O(k)\;;l .

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],...,T[k].

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(1?\1l + 0(2?\5l + -+ O(k?\;;l .

Proof.
There is one solution for every possible choice of boundary

conditions for T[1],...,T[k].

We show that the above set of solutions contains one solution
for every choice of boundary conditions.

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

‘m EADS 6.3 The Characteristic Polynomial =) =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

X1-A1 + o02-A2 + -+ XAy = TI[1]

‘m EADS 6.3 The Characteristic Polynomial =) =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

xp-A1 + o2 A2 + -+ Ay = T[1]
o A2+ AR+ e+ oA = T[2]

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

xp-A1 + o2 A2 + -+ Ay = T[1]
o A2+ AR+ e+ oA = T[2]

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

o1 -A1 + o2-Ar + + ox-Ar = TI[1]
o -A2 + o-Ad + oo AL = T[2]
o AN+ - A 4 + ox - AN = Tk]
.
6.3 The Characteristic Polynomial =) = =

© Ernst Mayr, Harald Réacke

The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the (xgs such that these conditions are met:

Al A e A o T[1]
AT A3 - A2 o2 T[2]
Ak oAk o Ak o T[k]

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the cx;s such that these conditions are met:

Al A e A o T[1]
AT A3 - A2 o | | TI2]
Ak oAk o Ak o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

At Az e Apo
ALAS e AR

Ak
A

T

EADS
© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

A1
A7

A
A

2
2
2

Ak—1 Ak 1 1
AZ, ARk AL A
Sl =1TA
: i=1
AL AR ARt agt

k-1

AyZ

T

EADS

6.3 The Characteristic Polynomial

© Ernst Mayr, Harald Réacke

A1 Ar oo Arl1 Ak 1 1

AT A3 - AD, ARk AL A
. . =112
: i=1
Ak Ak Ak Ak AL Akt
1A
k 1 A2
=[])
i=1 :
1 Ag

k-2
A1

Ak

A
A

A

AR

-1
-1

k-1

k-1
2

k-1
k

Ak

A

k-1
k

6.3 The Characteristic Polynomial

© Ernst Mayr, Harald Rédcke

Computing the Determinant

1 A Ak=2
1 A Ak-2
1 A ---)\115*2

© Ernst Mayr, Harald Réacke

6.3 The Characteristic Polynomial

Computing the Determinant

T

1 A Ak=2 pkt
1 A A=z Akt
1 Ak A2 Akt
1 Ap—-Ap-1 - A’f‘z—Al-/\ﬁ"? Alf_l—Al-Alf_Z
I Ao—=Ap-1 --- AK2oap a7 Akt oAy a2
IoAg=Ap-1 - A2 aklboag Ak
EADS 6.3 The Characteristic Polynomial =) = E

© Ernst Mayr, Harald Réacke

Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2
I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2
Lo Ag=Ap-1 -0 A2 AR AKTL iy k2

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2

I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2

Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
1 0 0 0
1 (A=A)-1 -+ (A2=A)-A53 (A —2Ay)-A52
1 A=AD-1 -+ A=A - A% (A —2Ap) - Af?

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?

m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?

. T - AFT AR
[TAi=2a0) - : :
= S L

m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

Computing the Determinant

Repeating the above steps gives:

A1 A e Apor Ag

AZ A% ... A2 A2

Lo SELEY I b PV i P VO V'
.k .k k. .k i=1 i>f

AT A2 e Ay Ay

Hence, if all A;’s are different, then the determinant is hon-zero.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogeneous Case

What happens if the roots are not all distinct?

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

To see this consider the polynomial

PIA] - A" K = oA + i A" L4 A2 4 o Ak

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

To see this consider the polynomial
PIAT- A" K = oA +)AL 4 A" 2 4 - AR

Since A; is a root we can write this as Q[A] - (A — A;)2.
Calculating the derivative gives a polynomial that still has root
Aj.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

This means

C01’l2\?71 +c1(n— 1)A?’2 + 4 op(n— k))\?—k—l =0

T

EADS 6.3 The Characteristic Polynomial =)
© Ernst Mayr, Harald Réacke

This means

C()Tl?qkl +c1(n— I)A?’Z + 4 op(n— k)}\?_k_l =0

Hence,

Co’l’l)\? +c1(n— 1))\71.1_1 + o tegn-— k)A?_k -0

T

EADS 6.3 The Characteristic Polynomial =)
© Ernst Mayr, Harald Rédcke

This means
C()Tl?qkl +c1(n— I)A?’Z + 4 op(n— k)}\?_k_l =0
Hence,

Co’l’l)\? +c1(n— 1))\71.1_1 + o tegn-— k)A?_k -0
— —_— [—"
T[n] T[n-1] Tin-k]

m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

The Homogeneous Case

Suppose A; has multiplicity j.

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

The Homogeneous Case

Suppose A; has multiplicity j. We know that
COTL?\? +c1(n— 1))\?‘1 + o teg(n— k)Ni’l—k -0

(after taking the derivative; multiplying with A; plugging in A;)

‘m EADS 6.3 The Characteristic Polynomial =)
© Ernst Mayr, Harald Rédcke

The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(n—1D2AM 4+t gm-Kk)2AR =0

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®Af +ci(m—1D2AM 4+ g n-k)2AT k=0

We can continue j — 1 times.

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

C0n22\7i1 +c1(n— 1)22\?71 + it ox(n - k)ZA?_k =0

We can continue j — 1 times.

Hence, ny)\? is a solution for£ €0,...,j — 1.

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Homogeneous Case

Lemma 3
Let P[A] denote the characteristic polynomial to the recurrence

coT[n]+ciT[n—1]1+---+cxT[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities ;. Then the general solution to the recurrence is

given by
£i-1

m vt
= Z Z - (nIA})

i=1 j=0

The full proof is omitted. We have only shown that any choice of
«;ij’s is a solution to the recurrence.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

T[0]=0
T[1]1=1
TInl=Tn-1]1+T[n-2]forn=2

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

T[0]=0
T[1]1=1
TInl=Tn-1]1+T[n-2]forn=2

The characteristic polynomial is

AZ_A-1

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tn]l=Tn-11+Tn-2]forn=2

The characteristic polynomial is
A2-A-1

Finding the roots, gives

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

Hence, the solution is of the form

(5 (15

;

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

Hence, the solution is of the form

(5 (15

T[0] =0 gives x+ S =0.

;

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

Hence, the solution is of the form

ORI

2 2

T[0] =0 gives x+ S =0.

T[1] =1 gives

(CONCOR

:

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

Hence, the solution is of the form

(7)o ()

2 2

T[0] =0 gives x+ S =0.

T[1] =1 gives

a(1+2ﬁ)+,8(1_2ﬁ)=1:>(x—3=

Gl

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Example: Fibonacci Sequence

Hence, the solution is

1 [/(1+\" (1-5
/5 2 B 2

)]

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

Consider the recurrence relation:
coTm)+ciTm—1)+c2Tm—-2)+---+cxT(n—k) = f(n)
with f(n) + 0.

While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Tp(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Tp(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

Example:
Tnl=Tn-11+1

T[0]=1

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

Example:
Tnl=Tn-11+1

Then,
Tn-1]1=Tn-2]+1

T[0]=1

(n=2)

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,

Tn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tn]-Tn-1]=T[n-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tn]-Tn-1]=T[n-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1] = 2.

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-20+1=0

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
\—(_J
(A-1)2

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
\—(_J
(A-1)2

Then the solution is of the form

Tn]l=axl"+pnl1" =+ Bn

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2_22+1=0
\—(_J
(A-1)2

Then the solution is of the form
Tn]l=axl"+pnl1" =+ Bn

T[0] =1 gives x = 1.

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2_22+1=0
_(—J
(A-1)2

Then the solution is of the form
Tn]l=axl"+pnl1" =+ Bn
T[0] =1 gives x = 1.

T[l]=2givesl1+B=2= f=1.

‘m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-2]1+(n-1)>2

‘m EADS 6.3 The Characteristic Polynomial =)
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-T[n-2]+2n-1

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-T[n-2]+2n-1

Tnl=2Tn-11-Tn-2]1+2n-1

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Réacke

Tn]l=2Tn-1]1-T[n-2]+2n-1

T

EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Tn]l=2Tn-1]1-T[n-2]+2n-1

Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1

T

EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke

Tn]l=2Tn-1]1-T[n-2]+2n-1

Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

T

EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Rédcke

Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

Tn]=3Tn-1]1-3T[n-2]+T[n-3]+2

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

Tn]=3Tn-1]1-3T[n-2]+T[n-3]+2

and so on...

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

Definition 4 (Generating Function)
Let (an)n=0 be a sequence. The corresponding

» generating function (Erzeugendenfunktion) is

F(z):= z anz™;

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Definition 4 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= z anz™;

n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is
a
F(z)= > —=z"

|
n=0 n

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Example 5

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.

m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Example 5
1. The generating function of the sequence (1,0,0,...) is
F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

1
F(Z)zﬁ.

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

There are two different views:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2 s0anz™ and g = >0 bnz™.

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =X ys0anz™ and g = X150 bnz™.
» Equality: f and g are equal if a,, = by, for all n.

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =X pz0anz™ and g = -0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, -0(an + by)z™.

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =D s0anz™and g = >0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, -0(an + by)z™.

> Multiplication: f - g := 3.0 cnz™ with ¢ = Xy _gapbn_p.

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =D s0anz™and g = >0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, -0(an + by)z™.

> Multiplication: f - g := 3.0 cnz™ with ¢ = Xy _gapbn_p.

There are no convergence issues here.

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

The arithmetic view:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

The arithmetic view:

We view a power series as a function f: C — C.

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

The arithmetic view:
We view a power series as a function f: C — C.

Then, it is important to think about convergence/convergence
radius etc.

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

What does > ,.02" = ﬁ mean in the algebraic view?

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

What does >,.02" = ﬁ mean in the algebraic view?
It means that the power series 1 — z and the power series

> =0 2™ are invers, i.e.,

o0

(1—2)-(Zzn)=1.

n=0

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

What does >,.02" = ﬁ mean in the algebraic view?
It means that the power series 1 — z and the power series
> =0 2™ are invers, i.e.,

o0

(1—2)-(Zzn)=1.

n=0

This is well-defined.

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Suppose we are given the generating function

1
ZZnzl—z'

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions
Suppose we are given the generating function

> "= z'

n=0

We can compute the derivative:

n-1 _ 1
an (1_2)2

nx=1

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions
Suppose we are given the generating function

> "= z'

n=0

We can compute the derivative:

1
nz"" 1_
ngl (1 - 2)2
— ——
Zpzo(n+l)zn

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Réacke

6.4 Generating Functions
Suppose we are given the generating function

> "= z'

n=0

We can compute the derivative:

1
nz" 1_
ngl (1-2)2
— ——
Snson+1)zn

Hence, the generating function of the sequence a, =n+1

is1/(1—2z)2.

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We can repeat this

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We can repeat this

Z(n+1)z”= 1

n=0

(1

—2)2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We can repeat this

1
n+)zht= ——- .
nzzzo() (1-2)2
Derivative: ’
n-1 _
> nn+1)z TIPS

nx=1

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We can repeat this

1
n+)zht= ——- .
nzz“o() (1-2)2
Derivative: ’
n-1 _
> nn+1)z TIPS

nx=1

ano(n+1)(n+2)z"

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We can repeat this

1
m+1)z"= ——— .
nZZZO (1- 2)2
Derivative: ’
nm+1)z" 1= —- _
nzzll (1-2)3
ano(n+1)(n+2)z"

Hence, the generating function of the sequence
apn=Mm+1)(n+2)is ﬁ

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Computing the k-th derivative of > z™.

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Computing the k-th derivative of > z™.

Zn(n—l)-...-(n—kJrl)z"‘k

nx=k

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Computing the k-th derivative of > z™.

Snm-1)-...-m-k+1)z" = > (nm+k)

nx=k n=0

o n+D2Z"

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Computing the k-th derivative of > z™.

dSnm-1)-...-m-k+Dz"* =Y m+k)-...-(m+1)z"
n=k n=0

K

(1= z)k+1 T

m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

Computing the k-th derivative of > z™.

dSnm-1)-...-m-k+Dz"* =Y m+k)-...-(m+1)z"
n=k n=0

3 k!

- (1_Z)k+1 '
Hence:

n+k\ , 1
Z(k)Z _(1_z)k+1'

n=0

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

Computing the k-th derivative of > z™.

dSnm-1)-...-m-k+Dz"* =Y m+k)-...-(m+1)z"
n=k n=0

3 k!

- (1_Z)k+1 '
Hence:

n+k\ , 1
Z(k)Z _(1_z)k+1'

The generating function of the sequence a,, = (”Zk> is W

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0

1 B 1
(1-2)2 1-z

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0
_ 1 1
T (1-22 1-z
_ z
C(1-2)2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0
1 1
T (1-22 1-z
_ z
- (1-2)2

The generating function of the sequence a, = n is ﬁ

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We know

1
Doyt=

n=0 -y

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

We know

Hence,

1
n:
ngoy -y
1
n-n _
ngoa 2 T 1 az

© Ernst Mayr, Harald Réacke

6.4 Generating Functions

6.4 Generating Functions

We know
1
yht=——
igg -y
Hence,
Z anz" = 1
"0 l1-az

The generating function of the sequence f;; = a™ is

1
l-az*

‘m EADS 6.4 Generating Functions

© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag =1.

A(z)

m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1
Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and

ag =1.

A(z) = > anz"

n=0

m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag =1.

A(z) = > anz"

n=0

=ap+ Y (an-1+1)z"
nx=1

T

EADS 6.4 Generating Functions =)
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

> anz"

n=0

ao+ Y (an-1+1)z"
nx=1

=1+z Z an-1z" 1 + Z z"
nx=1 nx=1

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

> anz"

n=0

ao+ Y (an-1+1)z"
nx=1

=1+z Z an-1z" 1 + Z z"
nx=1 nx=1

=z > apz"+ > z"

n=0 n=0

‘m EADS 6.4 Generating Functions =)
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

> anz"

n=0

ao+ Y (an-1+1)z"
nx=1

=1+z Z an-1z" 1 + Z z"
nx=1 nx=1

z Y apz+ > "
n=0 n=0

zA(z) + z z"

n=0

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z) = > anz"

n=0

=ap+ Y (an-1+1)z"
nx=1
=1+z Z an-1z" 1 + Z z"
nx=1 nx=1
z Y apz+ > "
n=0 n=0
zA(z) + z z"
n=0

1
zZA(z) + T

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

1

A2 =gz

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

I
(1-2)2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

1 J—
(1-2)2

> (n+1)z"

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

Hence, an, =n + 1.

I
(1-2)2

= > n+1)z"

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Some Generating Functions

n-th sequence element

generating function

T

EADS 6.4 Generating Functions

© Ernst Mayr, Harald Rédcke

Some Generating Functions

n-th sequence element

generating function

1

1
1-z

T

EADS 6.4 Generating Functions

© Ernst Mayr, Harald Réacke

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Some Generating Functions

n-th sequence element

generating function

1

n+1

(")

1
1-z
1
(1-2)?
1

T

EADS 6.4 Generating Functions

© Ernst Mayr, Harald Réacke

Some Generating Functions

T

n-th sequence element generating function
1 1
1-z
1
n+1 —
(1-2)?
(n+k) 1
k (1 _ Z)k+1
n _Zz
(1-2)?
EADS 6.4 Generating Functions =

© Ernst Mayr, Harald Réacke

Some Generating Functions

T

n-th sequence element generating function
1 1
1-z
1
n+1 —
(1-2)?
(n+k) 1
k (1 - z)k+1
n _z
(1-2)?
1
a‘}’l
1-az
EADS 6.4 Generating Functions =

© Ernst Mayr, Harald Réacke

Some Generating Functions

T

n-th sequence element generating function
1 1
1-z
1
n+1 1-2)2
(n+k) 1
k (1 - z)k+1
n _Zz
(1-2)2
1
n
a 1-az
2 z(1+2)
" 1-2)3
EADS 6.4 Generating Functions =

© Ernst Mayr, Harald Réacke

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1- Z)k+1
z
(1-2)?
1
1-az
z(1+2)
(1-2)3

eZ

T

EADS
© Ernst Mayr, Harald Réacke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

T

EADS 6.4 Generating Functions

© Ernst Mayr, Harald Rédcke

Some Generating Functions

n-th sequence element

generating function

cfn

cF

T

EADS 6.4 Generating Functions

© Ernst Mayr, Harald Rédcke

Some Generating Functions

T

n-th sequence element generating function
cfn cF
Sn + Gn F+G
EADS 6.4 Generating Functions =

© Ernst Mayr, Harald Rédcke

Some Generating Functions

T

n-th sequence element generating function
cfn cF
Sn+9n F+G
Z?:o Sfign-i F-G
EADS 6.4 Generating Functions =

© Ernst Mayr, Harald Réacke

Some Generating Functions

n-th sequence element

generating function

cfn
Sn+9n
Z?:o Sfign-i

fn-x (n=k); 0 otw.

cF

F+G

ZkF

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Some Generating Functions

generating function

n-th sequence element
cfn cF
Sn+gn F+G
Z?:o Jign-i F-G
Fnk (n=k); 0 otw. zkF
o)

T

6.4 Generating Functions

EADS
© Ernst Mayr, Harald Réacke

Some Generating Functions

n-th sequence element

generating function

T

cfn cF

Sn+9n F+G

Z?:o Sfign-i F-G

Fnk (n=k); 0 otw. ZkF

F(z)

ico fi -

dF(z)
nfn z dz
EADS 6.4 Generating Functions =

© Ernst Mayr, Harald Réacke

Some Generating Functions

n-th sequence element

generating function

cfn cF
Jn+9n F+G
Sito fign-i F-G
Fnk (n=k); 0 otw. zkF
ico fi f (_Z;
nfn z dl;(;)
c"fn F(cz)

T

EADS 6.4 Generating Functions

© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = >0 anz™.

m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:

T

EADS 6.4 Generating Functions =)
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:
» partial fraction decomposition (Partialbruchzerlegung)

T

EADS 6.4 Generating Functions =)
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

T

EADS 6.4 Generating Functions =) =
© Ernst Mayr, Harald Réacke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

6. The coefficients of the resulting power series are the a,,.

T

EADS 6.4 Generating Functions =)
© Ernst Mayr, Harald Réacke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = z anz"

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 2a,-1,a¢9 = 1
1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) =ap + Z anz"
nx=1

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) =ap + Z anz"
nx=1

2. Plug in:

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) =ap + Z anz"
nx=1

2. Plug in:
A(z) =1+ > (Rap-1)z"

nx=1

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

‘m EADS 6.4 Generating Functions =)
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0

T

EADS
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions =)

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0

=1+2z-A(z)

T

EADS
© Ernst Mayr, Harald Rédcke

6.4 Generating Functions =)

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

4. Solve for A(z).

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0

=1+2z-A(z)

T

EADS
© Ernst Mayr, Harald Réacke

6.4 Generating Functions =)

Example: a, = 2a,-1,a¢9 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0
=1+4+2z-A(2)

4. Solve for A(z).)
Al2) =175

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Rédcke

Example: a, = 2a,-1,a¢9 = 1
5. Rewrite f(z) as a power series:

1

A2) = 1-2z

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

D> anz" = A(z) =

n=0

1-2z

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

D> anz" = A(z) =

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

1. Set up generating function:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

1. Set up generating function:

A(z) = z anz"

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

A(z) = Z anz"

n=0

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:

A(z) = Z anz"

n=0

=ap+ Z anz"
n>1

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

A(z) = Z anz"

n=0
=ao+ Z anz"
nx=1

=1+ > (Ban-1 +n)z"
nx=1

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

Z anz"

n=0
ag + Z anz"
n>1

1+ > (Ban-1 +n)z"

nx=1

A(z)

=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

A(z) = z anz"
n=0
=ao+ Z anz"
n>1
=1+ > (Ban-1 +n)z"
nx=1
=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1
=1+3z > apz"+ > nz"
n=0 n=0

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

z anz"

n=0
ag + Z anz"
n>1

1+ > (Ban-1 +n)z"

nx=1

A(z)

=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1

=1+3z > apz"+ > nz"
n=0 n=0

z
= 1+32A(2)+m

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):

A(z) =1+ 3zA(z2) +

_z
(1-z

)2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):

A(z) =1+ 3zA(z2) +

gives

1-2)2+z
(1-32)(1-2)2

A(z) =

_Zz
(1-z

)2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):
z
A(Z) =1+ BZA(Z) + m
gives

(1-2)2+z z2—z+1

A =T 3a-22 T -390 -2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Rédcke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1
(1-32)(1-2)2

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 A B C

(1-32)(1-2)2 - 1—3z+1—z+ (1-2)2

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 1A . B . C
(1-32)(1-2)2 1-3z 1-z (1-2)2

This gives

Z2-z41=A(1-2%+B(1-32)(1-2)+C(1-32)

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Rédcke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 1A . B . C
(1-32)(1-2)2 1-3z 1-z (1-2)2

This gives
Z2-z41=A(1-2%+B(1-32)(1-2)+C(1-32)

=A(1-2z+2%)+B(1-4z+32%) +C(1-32)

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Rédcke

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 1A . B . C
(1-32)(1-2)2 1-3z 1-z (1-2)2

This gives
Z2-z41=A(1-2%+B(1-32)(1-2)+C(1-32)
=A(1-2z+2%)+B(1-4z+32%) +C(1-32)

=(A+3B)z2+ (-2A-4B-3C)z+ (A+B+ ()

‘m EADS 6.4 Generating Functions = =
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
which gives
7 1
A_Z B__Z C =

N | =

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

7 1 1 1 1
AD =1 773,713 1-2 2

1

(1-2)2

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(z)_i-l—Bz_Z'l—z_E'(1—2)2
. 23"2”—1- zz"—l- > (n+1)z"
4 4 2
n=0 n=0 n=0

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(z)_i-l—Bz_Z 1-z 2 (1-2z)2
. > 3nzn— . 1 > (n+1)z"
4 n=0 4 nzO n=0
— z n_l_l n
=2 (33" -5 5n+D)z
n=0

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(”:Zl_gz‘zl_z‘i'm
. > 3nzn - = Z"— = > (m+Dz"
4 n=0 4 n=0 n=0
v (ZL.gn_ 11
_n§0(4 3"~ 2(n+1))
_ 7oan_ 1 3\ »
nZZ:O(4 3" -an 4)2

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(z)_ill—Bz_Z'l—z_E'(1—2)2
_ Z i non _ l_ n/_‘l . n
=2 3"z 1 -3 > (n+1)z

>0 n=0

n
_ 7 on 101 n
_n§0(4 3" -5 2(n+1))z

7 1 3

s

6. This means a, = 53" — 3n —

‘m EADS 6.4 Generating Functions =
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=Jn-1-fnoforn=2.

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=JSn1-fnoforn=2.
Define

In :=10g fn .

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

gn =9n-1+9gn-2forn=2

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

In=9n-1+9gn-2 forn=2
g1 =log2 = 1(for log = log,), go =0

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

In =9n-1+gn-2forn=2
g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

‘m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

In =9gn-1+gn-2forn=2

g1 =log?2 = 1(for log = logy), go =0
gn = F,, (n-th Fibonacci number)

fn = ZF"

‘m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 7

fi=1
fn=3f%+n;forn=2k,kzl;

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 7

fi=1
fn=3f%+n;forn=2k,kzl;

Define
gk = fox .

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 7
fi=1
fn=3fn +m; form=2Kk=1;
Define
Ik = fok -
Then:
go=1

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

Example 7
fi=1
fn=3fn +m; form=2Kk=1;
Define
Ik = fok -
Then:
go=1

gk =3gk1+2K k=1

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6 Recurrences

We get

gk =3 [gr-1] + 2K

T

EADS
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

6 Recurrences

We get

Gk =

w W

[gr-1] + 2%
[3gk_2 + 2"‘1] + 2k

T

EADS
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

6 Recurrences

We get

gk =3 [gr-1] +2F
=3 [3gk_2 + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k

T

EADS
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [3gk_2 + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

T

EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

= 33gy_3 + 322k=2 4 3pk-1 4 pk

T

EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6 Recurrences

We get

gk =3[gk-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k
= 33gy_3 + 322k=2 4 3pk-1 4 pk
k

_ok. Y (;)i

i=0

T

EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

= 33gy_3 + 322k=2 4 3pk-1 4 pk

_ok. Y (;)i

T

i=0
3Vk+1 _
_ 2k . (2) 1
1/2
EADS 6.5 Transformation of the Recurrence E

© Ernst Mayr, Harald Réacke

6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

= 33gy_3 + 322k=2 4 3pk-1 4 pk

_ok. Y (;)i

T

i=0
3Vk+1 _
=2k . (2)71 _ 3k+1 _ ok+1
1/2
EADS 6.5 Transformation of the Recurrence E

© Ernst Mayr, Harald Réacke

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fu=3-3k-2.2k

T

EADS
© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k _2. 2k

© Ernst Mayr, Harald Réacke

6.5 Transformation of the Recurrence

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _92. 2k

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _92. 2k

=3nlo83 _2p .

© Ernst Mayr, Harald Rédcke

6.5 Transformation of the Recurrence

	Recurrences
	Guessing+Induction
	Master Theorem
	The Characteristic Polynomial
	Generating Functions
	Transformation of the Recurrence

