6 Recurrences

Algorlthm 2 mergesort(listL)

. n — size(L)
cifn<1returnlL

: Ly = L[1---1%]]

i Ly — L[[ J + 1 -n]
: mergesort(Ll)

: mergesort(Ly)

: L — merge(Ly,L>)

. return L
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6 Recurrences

Algorithm 2 mergesort(listL)

1
2
3
4
5:
6
7
8

. n — size(L)
cifn<1returnlL

Ly = L[1--- 3]

: Ly = L[L3]+1:--n]

: mergesort(Ly)
: L — merge(Ly,L>)
: return L

mergesort(Ly)

This algorithm requires

T(n)=T(|

3 =713+ =2r([]) o0

comparisons when n > 1 and 0 comparisons when n < 1.
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Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?
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Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

For this we need to solve the recurrence.
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Methods for Solving Recurrences

1. Guessing+Induction
Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.
2. Master Theorem

For a lot of recurrences that appear in the analysis of
algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this
method.

T
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Methods for Solving Recurrences

4. Generating Functions
A more general technique that allows to solve certain types
of linear inhomogenous relations and also sometimes
non-linear recurrence relations.

5. Transformation of the Recurrence
Sometimes one can transform the given recurrence relations
so that it e.g. becomes linear and can therefore be solved
with one of the other techniques.

T
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6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {
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6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(5) +cn n=2
0 otherwise

T(n) < {
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6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(5) +cn n=2
0 otherwise

T(n) < {

One way of solving such a recurrence is to guess a solution, and
check that it is correct by plugging it in.
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d.
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§) +cn
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§> +cn

< Z(dglogg) +cn
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then
n
T(n) < 2T(§> +cn
n n
< Z(dilog E) +cn

=dn(logn-1)+cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke



6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§> +cn
< Z(dglogg) +cn

=dn(logn-1)+cn

=dnlogn+ (c—d)n
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T(§> +cn
n n
< 2(d§10g5> +cn
=dn(logn-1)+cn

=dnlogn+ (c—d)n
<dnlogn

if we choose d > c.
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T(§> +cn
n n
< 2<d§10g§) +cn
=dn(logn-1)+cn

=dnlogn+ (c—d)n
<dnlogn

if we choose d > c.

Formally one would make an induction proof, where the above is
the induction step. The base case is usually trivial.
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6.1 Guessing+Induction

T(n) < {

2T(5) +cn n=>16
b otw.
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6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n)
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Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 <n <16):
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6.1 Guessing+Induction T(n)

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.
> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < 2T(%) +cn
< Z(dglog%) +cn

=dn(logn—-1) +cn

=dnlogn+ (c—d)n



6.1 Guessing+Induction T(n) < { 2T(3) +cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.

> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(E> +cn
n n
< 2(d§10g§> +cn
=dn(logn—-1) +cn

=dnlogn+ (c—d)n
<dnlogn



6.1 Guessing+Induction T(n) < { 2T(3) +cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d = b.

> induction step2...n -1 - n:

Suppose statem. is true forn’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(E> +cn
n n
< 2(d§10g§> +cn
=dn(logn—-1) +cn

=dnlogn+ (c—d)n
<dnlogn

Hence, statement is true if we choose d = c.



6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?
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6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([53]) +cn n =16
b otherwise

T(n) < {
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6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([52]) +cn n =16
T(n) < 1z D _
b otherwise
Note that we can do this as for constant-sized inputs the running
time is always some constant (b in the above case).
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n)
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([g]) +cn
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6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < ZT([Q]) +cn

< 2(d[%1 log [g]) +cn
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6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < ZT([Q]) +cn

< 2(d[%1 log [g]) +cn
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

—_
SE
—
IA
SE
b
—

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

T
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6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

[3]=<3+1| <2(d(n/2+1)log(n/2+1)) +cn
Lils<qgn

.
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6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get

T(n) < ZT([g]) +cn

< 2(d[%1 log [g]) +cn

[3]<5+1] <2(d(n/2+1)log(n/2 +1)) +cn
9

n lsi =

5 + 6N sdnlog(lGn) +2dlogn +cn

.
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([g]) +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

+1<n| <dnlog (%n) +2dlogn +cn

n
2

log %n =logn + (log9 — 4) ‘
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

n
2

+1<n| <dnlog (l%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

n
2

+1<n| <dnlog (l%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< 2(d[%1 log [g]) +cn

<2(dn/2+1)log(n/2+1)) +cn

—

n n
[3]<5+

n
2

+1<3n| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 — 3.5)dn +cn

‘m EADS 6.1 Guessing+Induction =
© Ernst Mayr, Harald Réacke



6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< 2(d[%1 log [g]) +cn

[2]<%+1] <2(dn/2+1)log(n/2+1)) +cn

n <39 9

7+l=gn| <dnlog (I—Gn) +2dlogn + cn
log%n=logn+<log9—4)‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 — 3.5)dn +cn
<dnlogn —0.33dn +cn
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [g]) +cn

[2]=%+1] <2(d(n/2+1)log(n/2 + 1)) +cn

Z+1<%n| <dnlog (%n) +2dlogn +cn
log%n=logn+<log9—4)‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 — 3.5)dn +cn
<dnlogn —0.33dn +cn
<dnlogn

for a suitable choice of d.
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6.2 Master Theorem

Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence n

T(n) = aT(E) + f(n) .

Case 1.
If f(n) = O(n'°8(@=€) then T(n) = O(nlogra),

Case 2.
If f(n) = (N8 @ 1ogk n) then T(n) = O ('8 21ogk* 1 n),
k=0.

Case 3.
If f(n) = Q(nl°8@+€) and for sufficiently large n

af(%) < cf(n) for some constant c <1 then T(n) = O(f(n)).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke



6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

=
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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6.2 Master Theorem

This gives
log, n—1

T(n) =nl&a 4 3 a%(%) )

i=0
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Case 1. Now suppose that f(n) < cnlog»a—¢€,
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

T(n) _ nlogb a
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1

T -l =3 aif(r)

i=0
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1

T -l =3 aif(r)

i=0
log, n—1

¢ 3 ai

i=0

IA

n
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Case 1. Now suppose that f(n) < cnlog»a—¢€,
log, n—-1 n
T(n) -nlo&rd = alf<ﬁ>
i=0
log, n—1

logy, a—€
(n
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogh u)—i = peig—i |
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1 ]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — Cnlogb a—e Z (be)l

i=0
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1 ]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — Cnlogb a—e Z (be)l

i=0

k+1,1
zl Oq q-1
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0
logy n-1 logy, a—e
<cC a bi
i=0
log, n—1 ]
p-ilogpa—€) _ pei(plogpay—i — peig—i I — cnlogb a—e Z (be)l
i=0
gktl-1 | _ log, a—€ belogbn -1) bE -1
Stoai=4t|=cn ( /( )
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0

log, n—1 log, a—e

<cC a bi
i=0
log, n—1 ]

p-ilogpa—€) _ pei(plogpay—i — peig—i I — cnlogb a—e Z (be)l

i=0

Zl oq ’:1;1 _ cnlogba—E(belogbn _ 1)/(be -1)
= cnlo8a€(n€ —1)/(b° - 1)

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke



Case 1. Now suppose that f(n) < cnlog»a—¢€,

T(n) —

-

i(logy a—e)

— bei(blogb u)—i

zl ()q

T

EADS

© Ernst Mayr,

Harald Racke

log, n—-1 n
e a3
i=0
logy n-1 logy, a—e
<cC a bi
i=0
log, n—1 ]
- peia-i| = cnloBra=c N (p€)!
i=0
’:1;1 _ cnlogb a—E(beloghn _ 1)/(be -1)
= cnlo8ra=€(n€ — 1)/ (b - 1)
¢ logy, a(.,€ €
= b —
e_1" (n®-1)/(n%)
6.2 Master Theorem =) =



Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—-1 n
T -l =3 aif(r)
i=0
log, n—1 log, a—e
<cC a bi
i=0
log, n—1
— _ . i P log, a—¢ €\l
p—illogy a—e) :ba(blogba) Lo peig-i| = cn b Z (b )
i=0
gftl-1 | _ log, a—€ beloghn -1) bE -1
Stoai=4t|=cn ( /( )
= cnlo8ra=€(pc _ 1)/(b€ - 1)
¢ logy, a(.,€ €
= b —
e_1" (n®-1)/(n%)
Hence,
T(n) < ( + 1>nl°gh(“)
be -1
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Case 1. Now suppose that f(n) < cnlog»a—¢€,

log, n—1 n
T -l =3 aif(r)
i=0
logyn-1 1\ logya—e
se 3 al(y)
i=0
log, n—1 ]
b—i(logha—e):bei(blogbu)—i:beia—i :cnIOgba_e Z (be)l
i=0

Zl 0‘1 i O cnlogba—E(beloghn _ 1)/(be -1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n9)

Hence,

T(n) < ( + 1>n1°gh(“) > T(n) = O(n'osra).

be -1
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Case 2. Now suppose that f(n) < cnlog» 4,
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Case 2. Now suppose that f(n) < cnlog» 4,

T(n) - nlogb a
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Case 2. Now suppose that f(n) < cnlog» 4,

log, n—-1

T(n) — nlogra = Z aif(%)

i=0
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Case 2. Now suppose that f(n) < cnlog» 4,

log, n—-1 n
_ logpa _ i hid
T(n)—nosrd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a (bi>
i=0

IA
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Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
'LE 8b
<c > a i
i=0
log, n—1
=cnlogra X
i=0
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Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: (n logy, a
[ a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA
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Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: (n logy, a
[ a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

Hence,
T(n) = O(n'°% *log, n)
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Case 2. Now suppose that f(n) < cnlog» 4,

log, n—1
b n

Ty - S atp(2)

1
i=0 b
log, n—1
gbZ: in log, a
C a bi
i=0
log, n—1
=cnlogra X
i=0
= cnl°® %log, n

IA

Hence,

T(n) = 08 log,n) |= T(n) = O(n'8<logn).
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Case 2. Now suppose that f(n) = cnlog» 4,
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Case 2. Now suppose that f(n) = cnlog» 4,

T(n) - nlogb a
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Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0
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Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nosra = z af(bi)
i=0
log, n—-1

log, a
i n
2 i
=C a (bi>
i=0
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Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Sh
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
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Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n
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Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

Hence,
T(n) = Q(n'°8 %log, n)
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Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nlosne =Y atf(r)
i=0
log, n—-1 log, a
lﬁ Zp
¢ > a i
i=0
log, n—-1
=cnlo®a X
i=0
=cnl°® %log, n

Hence,

T(n) = Q(n'°8 %log, n) ‘=> T(n) = Q(n%8 2]ogn).
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

T(n) — nlogra
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1

T(n) - nloma= Y av(%)

i=0
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.
logp n—1 n
o) —nlowd =3 aif (1)
i=0
log, n—1 logy a
(n n
sc 3 a(g) (o (5

i=0

)
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 ’ n
1=

IA
9}
&H
—
e
N——
S
')
=
Q
—
o
o
o
N
—
=
2
~—
N———
~

n:h#=>€:logbn|
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1

T(n)-nlo&a =% aif(ﬁ)

i=0
log, a n k
) (o (53)
£-1

log, n—1
b\ K
n:h#=>€:logbn| = cnlosr @ Z (logb (ﬁ))

<c > ai<
i=0

=

i=0
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 n
o) —nlowd =3 aif (1)
i=0
loghn—1' logy a
SIS () (o

i=0

- bl \ K
n:hyjﬁzlogbn‘ =C1’Llogbaz (logb< ))

= cnlogra i 0 - i)k

i=0

bl

7))
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

n
(4)

n logy a n k
@(5r) " (1om (7))

b\ K
n:hgjﬁzlogbn‘ = cnlogr @ (logb (*))

logp n—1

T(n)-nl®a =% gif
i=0
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o
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o
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

n
(4)

n logy a n k
a(5) - (1o (57))

-1 b\ K
n:h”:E:logbn‘ = cnlosra Z (logb (ﬁ))
i=0

£-1
Cnlogba Z (_g _ l)k

i=0

logp n—1

T(n)-nl®a =% gif

IA
o

= Cnl()gb a ik |~ %#kﬂ

H.
LM s i
~
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 ’ n
T(n)-nlo&a =% alf(ﬁ)

i=0

IA
o
&N
—
=
~—
5
=)
S
N
—
(]
o
o
N
—
&
=
~—
N~
~

-1 btk
n:hgjﬁzlogbn‘ = cnlogr @ (logb (*))

|
o
S
—
o
[
=
S
—
S
I
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~
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= cnlogra Z ik
i=1
%nlogh u€k+1

u
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Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

logp n—1 n
_ ,logya _ i Rid
T(n)-nlogra = % af(bi)
i=0
log, n—1

S ) (1)

i=0

- pi\\ K
n:hgjﬁzlogbn‘ = cnlosr @ Z (logb( ))
i=0

£-1
_ Cnlogba Z(’E—l)k

i=0
4
= cnlogra Z ik
i=1
c
~ nlogh u€k+1

= T(n)

= O(n'osr 4 1ogk 1 n).
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) <cf(n), forc < 1.
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1

Ton) —nloswd =3 aif ()

i=0
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
Ton) —nloswd =3 aif ()
i=0
log, n—-1
< > cfm) +ome
i=0
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
_ plogya _ ig( N
T(n)—nosr = Z “f<bi>
i=0
log, n—-1
i logy, a
< c'f(n) + O(m°8r %)
i=0
7’ _gn+l
q<1:zl”=0qlzllq_q sﬁ
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1 n
Ton) —nloswd =3 aif ()
i=0
log, n—-1
< > cifm) +0mnosna)
i=0
n i 1= n+1 1
a<1:3%,q" = llq_q < ﬁ Sl _Cf(n) + O(n'o8r )
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1

L (n
T(n) —nlogra = Z alf<ﬁ>
i=0
log, n—-1
< > cifm) +0mnosna)
i=0
n i _an+1 ]- l
a<1:3%,q' = llq_q < ﬁ Sl _Cf(n) + O (n'°sr )
Hence,

T(n) <0(f(n))
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Case 3. Now suppose that f(n) = dnl°8»a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—-1
=St
2 ar(y)
log, n—-1
< > cifn)+omond
i=0
q<1:zg‘=0qi:171q_nq+1 Sﬁ Slicf(n)—‘ro(nlogba)
Hence,
T(n) <0(f(n)) > T(n) = ®(f(n))_‘
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
10001001|1 B

L
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
1000100 1|1 B

o
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

1

o
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101[0]1 A
1000100(1/1 B
0/0

Cl
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

o000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
10001[0011 B
1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101{1jo101 A
1000(1/0011 B

' J1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{1{101 01 A
1000(1/00 11 B

01000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
jo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
Joo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
1001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
1100010011 B
/1001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
11000010011 B
11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
/11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
011001000

1
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
' Jo11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
1011001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,9000100 11 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1
10001
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
0
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
100010
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

00
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010
00000O0O
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O

‘m EADS 6.2 Master Theorem =)
© Ernst Mayr, Harald Réacke



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
00O
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
1T0001000O0
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
1T0001000O0
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B x| A
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b bo‘x‘an ao
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn b% b%_l bo‘x‘an a% a%_l ao

‘m EADS 6.2 Master Theorem =) =
© Ernst Mayr, Harald Réacke



Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

Hence,

A-B=AB-2"+ (A1Bo + AgBy) - 27 + Ao - Bo
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + 7 - 27 4 Zo

o(1)
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

o(1)
O(1)

© Ernst Mayr, Harald Réacke
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[Al = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Ay, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7

o(1)
O(1)
On)

© Ernst Mayr, Harald Réacke
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

© Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A,B;)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z - 2" + Z; - 27 VA4
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
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1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z - 2" + Z; - 27 VA4
6.2 Master Theorem =) =



Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + Z; - 27 VA4
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8: return Z - 2" + Z; - 27 VA4
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |JA| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(A,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n
T(n) = 4T<§) +0n) .
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT

» Case 1: f(n) = O(nlo8ra-¢) T(n) =
= @(nlogr a]ogk+!
=0(f(n))

» Case 2: f(n) = O(nl°%21ogkn) T(n)
» Case 3: f(n) = Q(nlosra+e) T(n)

) + f(n).

(nlogb a)

n)
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT )+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

n)

‘m EADS 6.2 Master Theorem =]
© Ernst Mayr, Harald Réacke



Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT )+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ®(n?) for our algorithm.

n)
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT )+ f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlosra)

» Case 2: f(n) = O(nl°%r%1ogkn) T(n) = O(nlogr a]1ogk+!

» Case 3: f(n) = Q(nlosra+e) T(n) =0(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ®(n?) for our algorithm.

= Not better then the “school method”.

n)
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

T
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6.2 Master Theorem
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)

T

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Réacke



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)
O(1)

T
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split Ainto Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo
8: return Zp - 2" + Z; - 27 & Zo

o)
O(1)
O(n)

T
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bq)

6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo

EADS 6.2 Master Theorem =) =
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Aog, By)

7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split Ainto Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Aog, By) T(%)
7: Z1 — mult(Ag+A1,Bo+B1) —Z>— Zo

8: return Zp - 2" + Z; - 27 & Zo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)
T(%) +0(n)

T
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap+ A1) - (Bo+ B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split Ainto Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, By)
. Z1 —« mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 27 & Zo

O(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)

T
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(%) +Om) .
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Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))
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Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_
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Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0n) .

Master Theorem: Recurrence: T[n] = aT(y) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = O(nlogr @)
» Case 2. f(n) = O(nl°%aloghn) T(n) = O(nloralogh*! n)
» Case 3: f(n) = Q(nlograte) T(n)=0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_

A huge improvement over the “school method”.

‘m EADS 6.2 Master Theorem =] =
© Ernst Mayr, Harald Réacke



6.3 The Characteristic Polynomial

Consider the recurrence relation:

coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:
coT(m)+ciTm—1)+c2Tm—-2)+---+cxT(n—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

‘m EADS 6.3 The Characteristic Polynomial =) =
© Ernst Mayr, Harald Réacke



6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

Approach:
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:

» First determine all solutions that satisfy recurrence relation.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
» First consider the homogenous case.
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The Homogenous Case

The solution space

S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space.

© Ernst Mayr, Harald Réacke
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens.
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 77,7, € S, then also
oxT1 + BT, € S, for arbitrary constants «, 8.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

COAn+C1An_1 +Cp - An—Z + e+ An—k =0

for all n > k.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke



The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + AR e AR 2 =0
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

characteristic polynomial P[A]
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = ?\’i‘
is a solution to the recurrence relation.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke



The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A’f
is a solution to the recurrence relation.

Let Aq,..., Ak be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
XA + ALY + -+ oAy

is a solution for arbitrary values «j.
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The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of

the form
0(1?\1l + 0(2?\51 + -+ O(k)\? .
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The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(1?\1l + 0(2?\5l + -+ O(k)\;;l .

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],...,T[k].
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The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

0(1?\1l + 0(2?\5l + -+ O(k?\;;l .

Proof.
There is one solution for every possible choice of boundary

conditions for T[1],...,T[k].

We show that the above set of solutions contains one solution
for every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

X1-A1 + o02-A2 + -+ XAy = TI[1]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

xp-A1 + o2 A2 + -+ Ay = T[1]
o A2+ AR+ e+ oA = T[2]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

xp-A1 + o2 A2 + -+ Ay = T[1]
o A2+ AR+ e+ oA = T[2]
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The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

o1 -A1 + o2-Ar + + ox-Ar = TI[1]
o -A2 + o-Ad + oo AL = T[2]
o AN+ - A 4 + ox - AN = Tk]
.
6.3 The Characteristic Polynomial =) = =
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The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the (xgs such that these conditions are met:

Al A e A o T[1]
AT A3 - A2 o2 T[2]
Ak oAk o Ak o T[k]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the cx;s such that these conditions are met:

Al A e A o T[1]
AT A3 - A2 o | | TI2]
Ak oAk o Ak o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.
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At Az e Apo
ALAS e AR

Ak
A

T

EADS
© Ernst Mayr, Harald Réacke
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A1
A7

A
A

2
2
2

Ak—1 Ak 1 1
AZ, ARk AL A
Sl =1TA
: i=1
AL AR ARt agt

k-1

AyZ

T

EADS

6.3 The Characteristic Polynomial
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A1 Ar oo Arl1 Ak 1 1

AT A3 - AD, ARk AL A
. . =112
: i=1
Ak Ak Ak Ak AL Akt
1A
k 1 A2
=[] )
i=1 :
1 Ag

k-2
A1

Ak

A
A

A

AR

-1
-1

k-1

k-1
2

k-1
k

Ak

A

k-1
k

6.3 The Characteristic Polynomial
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Computing the Determinant

1 A Ak=2
1 A Ak-2
1 A --- )\115*2
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Computing the Determinant

T

1 A Ak=2 pkt
1 A A=z Akt
1 Ak A2 Akt
1 Ap—-Ap-1 - A’f‘z—Al-/\ﬁ"? Alf_l—Al-Alf_Z
I Ao—=Ap-1 --- AK2oap a7 Akt oAy a2
IoAg=Ap-1 - A2 aklboag Ak
EADS 6.3 The Characteristic Polynomial =) = E
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Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2
I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2
Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
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Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2

I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2

Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
1 0 0 0
1 (A=A)-1 -+ (A2=A)-A53 (A —2Ay)-A52
1 A=AD-1 -+ A=A - A% (A —2Ap) - Af?
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Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?
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Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?

. T - AFT AR
[TAi=2a0) - : :
= S L
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Computing the Determinant

Repeating the above steps gives:

A1 A e Apor Ag

AZ A% ... A2 A2

Lo SELEY I b PV i P VO V'
.k .k k. .k i=1 i>f

AT A2 e Ay Ay

Hence, if all A;’s are different, then the determinant is hon-zero.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke



The Homogeneous Case

What happens if the roots are not all distinct?
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

To see this consider the polynomial

PIA] - A" K = oA + i A" L4 A2 4 o Ak
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nAZ.

To see this consider the polynomial
PIAT- A" K = oA + )AL 4 A" 2 4 - AR

Since A; is a root we can write this as Q[A] - (A — A;)2.
Calculating the derivative gives a polynomial that still has root
Aj.

‘m EADS 6.3 The Characteristic Polynomial = =
© Ernst Mayr, Harald Réacke



This means

C01’l2\?71 +c1(n— 1)A?’2 + 4 op(n— k))\?—k—l =0

T
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This means

C()Tl?qkl +c1(n— I)A?’Z + 4 op(n— k)}\?_k_l =0

Hence,

Co’l’l)\? +c1(n— 1))\71.1_1 + o tegn-— k)A?_k -0

T
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This means
C()Tl?qkl +c1(n— I)A?’Z + 4 op(n— k)}\?_k_l =0
Hence,

Co’l’l)\? +c1(n— 1))\71.1_1 + o tegn-— k)A?_k -0
— —_— [ —"
T[n] T[n-1] Tin-k]
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The Homogeneous Case

Suppose A; has multiplicity j.
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The Homogeneous Case

Suppose A; has multiplicity j. We know that
COTL?\? +c1(n— 1))\?‘1 + o teg(n— k)Ni’l—k -0

(after taking the derivative; multiplying with A; plugging in A;)
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(n—1D2AM 4+t gm-Kk)2AR =0

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke



The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®Af +ci(m—1D2AM 4+ g n-k)2AT k=0

We can continue j — 1 times.
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(m— DAL+ 4 e(n - kA * =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

C0n22\7i1 +c1(n— 1)22\?71 + it ox(n - k)ZA?_k =0

We can continue j — 1 times.

Hence, ny)\? is a solution for£ €0,...,j — 1.
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The Homogeneous Case

Lemma 3
Let P[A] denote the characteristic polynomial to the recurrence

coT[n]+ciT[n—1]1+---+cxT[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities ;. Then the general solution to the recurrence is

given by
£i-1

m vt
= Z Z - (nIA})

i=1 j=0

The full proof is omitted. We have only shown that any choice of
«;ij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]1=1
TInl=Tn-1]1+T[n-2]forn=2

m EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Réacke



Example: Fibonacci Sequence

T[0]=0
T[1]1=1
TInl=Tn-1]1+T[n-2]forn=2

The characteristic polynomial is

AZ_A-1
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Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tn]l=Tn-11+Tn-2]forn=2

The characteristic polynomial is
A2-A-1

Finding the roots, gives
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Example: Fibonacci Sequence

Hence, the solution is of the form

(5 (15

;
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Example: Fibonacci Sequence

Hence, the solution is of the form

(5 (15

T[0] =0 gives x+ S =0.

;
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Example: Fibonacci Sequence

Hence, the solution is of the form

ORI

2 2

T[0] =0 gives x+ S =0.

T[1] =1 gives

(CONCOR

:
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Example: Fibonacci Sequence

Hence, the solution is of the form

(7)o ()

2 2

T[0] =0 gives x+ S =0.

T[1] =1 gives

a(1+2ﬁ)+,8(1_2ﬁ)=1:>(x—3=

Gl
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Example: Fibonacci Sequence

Hence, the solution is

1 [/(1+\" (1-5
/5 2 B 2

)]
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The Inhomogeneous Case

Consider the recurrence relation:
coTm)+ciTm—1)+c2Tm—-2)+---+cxT(n—k) = f(n)
with f(n) + 0.

While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Tp(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Tp(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:
Tnl=Tn-11+1

T[0]=1
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The Inhomogeneous Case

Example:
Tnl=Tn-11+1

Then,
Tn-1]1=Tn-2]+1

T[0]=1

(n=2)
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The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,

Tn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)
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The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tn]-Tn-1]=T[n-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)
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The Inhomogeneous Case

Example:
Tnl=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tn]-Tn-1]=T[n-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-20+1=0
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
\—(_J
(A-1)2
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
\—(_J
(A-1)2

Then the solution is of the form

Tn]l=axl"+pnl1" =+ Bn
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2_22+1=0
\—(_J
(A-1)2

Then the solution is of the form
Tn]l=axl"+pnl1" =+ Bn

T[0] =1 gives x = 1.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2_22+1=0
_(—J
(A-1)2

Then the solution is of the form
Tn]l=axl"+pnl1" =+ Bn
T[0] =1 gives x = 1.

T[l]=2givesl1+B=2= f=1.
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-2]1+(n-1)>2

‘m EADS 6.3 The Characteristic Polynomial =)
© Ernst Mayr, Harald Réacke



The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-T[n-2]+2n-1
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The Inhomogeneous Case

If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?
Shift:

TIn-11=Tn-21+n-1°=Tn-2]+n?-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-T[n-2]+2n-1

Tnl=2Tn-11-Tn-2]1+2n-1
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Tn]l=2Tn-1]1-T[n-2]+2n-1

T
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Tn]l=2Tn-1]1-T[n-2]+2n-1

Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1

T
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Tn]l=2Tn-1]1-T[n-2]+2n-1

Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

T
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Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3
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Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

Tn]=3Tn-1]1-3T[n-2]+T[n-3]+2
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Tn]l=2Tn-1]1-T[n-2]+2n-1
Shift:

Tn-1]1=2T[n-2]-T[n-3]1+2(n-1) -1
=2T[n-2]-Tn-3]+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2T[n-2]1+Tn-3]1-2n+3

Tn]=3Tn-1]1-3T[n-2]+T[n-3]+2

and so on...

‘m EADS 6.3 The Characteristic Polynomial =
© Ernst Mayr, Harald Rédcke



6.4 Generating Functions

Definition 4 (Generating Function)
Let (an)n=0 be a sequence. The corresponding

» generating function (Erzeugendenfunktion) is

F(z):= z anz™;

n=0
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6.4 Generating Functions

Definition 4 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= z anz™;

n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is
a
F(z)= > —=z"

|
n=0 n
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6.4 Generating Functions

Example 5

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.
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6.4 Generating Functions

Example 5
1. The generating function of the sequence (1,0,0,...) is
F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

1
F(Z)zﬁ.
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6.4 Generating Functions

There are two different views:
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2 s0anz™ and g = >0 bnz™.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =X ys0anz™ and g = X150 bnz™.
» Equality: f and g are equal if a,, = by, for all n.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =X pz0anz™ and g = -0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, -0(an + by)z™.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =D s0anz™and g = >0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, -0(an + by)z™.

> Multiplication: f - g := 3.0 cnz™ with ¢ = Xy _gapbn_p.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =D s0anz™and g = >0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, -0(an + by)z™.

> Multiplication: f - g := 3.0 cnz™ with ¢ = Xy _gapbn_p.

There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f: C — C.
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6.4 Generating Functions

The arithmetic view:
We view a power series as a function f: C — C.

Then, it is important to think about convergence/convergence
radius etc.
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6.4 Generating Functions

What does > ,.02" = ﬁ mean in the algebraic view?
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6.4 Generating Functions

What does >,.02" = ﬁ mean in the algebraic view?
It means that the power series 1 — z and the power series

> =0 2™ are invers, i.e.,

o0

(1—2)-(Zzn)=1.

n=0
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6.4 Generating Functions

What does >,.02" = ﬁ mean in the algebraic view?
It means that the power series 1 — z and the power series
> =0 2™ are invers, i.e.,

o0

(1—2)-(Zzn)=1.

n=0

This is well-defined.
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6.4 Generating Functions

Suppose we are given the generating function

1
ZZnzl—z'

n=0
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6.4 Generating Functions
Suppose we are given the generating function

> "= z'

n=0

We can compute the derivative:

n-1 _ 1
an (1_2)2

nx=1
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6.4 Generating Functions
Suppose we are given the generating function

> "= z'

n=0

We can compute the derivative:

1
nz"" 1_
ngl (1 - 2)2
— ——
Zpzo(n+l)zn
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6.4 Generating Functions
Suppose we are given the generating function

> "= z'

n=0

We can compute the derivative:

1
nz" 1_
ngl (1-2)2
— ——
Snson+1)zn

Hence, the generating function of the sequence a, =n+1

is1/(1—2z)2.

‘m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke



6.4 Generating Functions

We can repeat this
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6.4 Generating Functions

We can repeat this

Z(n+1)z”= 1

n=0

(1

—2)2
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6.4 Generating Functions

We can repeat this

1
n+)zht= ——- .
nzzzo( ) (1-2)2
Derivative: ’
n-1 _
> nn+1)z TIPS

nx=1
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6.4 Generating Functions

We can repeat this

1
n+)zht= ——- .
nzz“o( ) (1-2)2
Derivative: ’
n-1 _
> nn+1)z TIPS

nx=1

ano(n+1)(n+2)z"
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6.4 Generating Functions

We can repeat this

1
m+1)z"= ——— .
nZZZO (1- 2)2
Derivative: ’
nm+1)z" 1= —- _
nzzll (1-2)3
ano(n+1)(n+2)z"

Hence, the generating function of the sequence
apn=Mm+1)(n+2)is ﬁ
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6.4 Generating Functions

Computing the k-th derivative of > z™.
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6.4 Generating Functions

Computing the k-th derivative of > z™.

Zn(n—l)-...-(n—kJrl)z"‘k

nx=k
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6.4 Generating Functions

Computing the k-th derivative of > z™.

Snm-1)-...-m-k+1)z" = > (nm+k)

nx=k n=0

o n+D2Z"

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke



6.4 Generating Functions

Computing the k-th derivative of > z™.

dSnm-1)-...-m-k+Dz"* =Y m+k)-...-(m+1)z"
n=k n=0

K

(1= z)k+1 T
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6.4 Generating Functions

Computing the k-th derivative of > z™.

dSnm-1)-...-m-k+Dz"* =Y m+k)-...-(m+1)z"
n=k n=0

3 k!

- (1_Z)k+1 '
Hence:

n+k\ , 1
Z( k )Z _(1_z)k+1'

n=0
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6.4 Generating Functions

Computing the k-th derivative of > z™.

dSnm-1)-...-m-k+Dz"* =Y m+k)-...-(m+1)z"
n=k n=0

3 k!

- (1_Z)k+1 '
Hence:

n+k\ , 1
Z( k )Z _(1_z)k+1'

The generating function of the sequence a,, = (”Zk> is W
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6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0
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6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0

1 B 1
(1-2)2 1-z
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6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0
_ 1 1
T (1-22 1-z
_ z
C(1-2)2
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6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0
1 1
T (1-22 1-z
_ z
- (1-2)2

The generating function of the sequence a, = n is ﬁ
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6.4 Generating Functions

We know

1
Doyt=

n=0 -y
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6.4 Generating Functions

We know

Hence,

1
n:
ngoy -y
1
n-n _
ngoa 2 T 1 az

© Ernst Mayr, Harald Réacke
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6.4 Generating Functions

We know
1
yht=——
igg -y
Hence,
Z anz" = 1
"0 l1-az

The generating function of the sequence f;; = a™ is

1
l-az*
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Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag =1.

A(z)
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Example: a, = ay-1 + 1,a90 =1
Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and

ag =1.

A(z) = > anz"

n=0
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Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag =1.

A(z) = > anz"

n=0

=ap+ Y (an-1+1)z"
nx=1

T
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Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

> anz"

n=0

ao+ Y (an-1+1)z"
nx=1

=1+z Z an-1z" 1 + Z z"
nx=1 nx=1
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Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

> anz"

n=0

ao+ Y (an-1+1)z"
nx=1

=1+z Z an-1z" 1 + Z z"
nx=1 nx=1

=z > apz"+ > z"

n=0 n=0
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Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

> anz"

n=0

ao+ Y (an-1+1)z"
nx=1

=1+z Z an-1z" 1 + Z z"
nx=1 nx=1

z Y apz+ > "
n=0 n=0

zA(z) + z z"

n=0
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Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z) = > anz"

n=0

=ap+ Y (an-1+1)z"
nx=1
=1+z Z an-1z" 1 + Z z"
nx=1 nx=1
z Y apz+ > "
n=0 n=0
zA(z) + z z"
n=0

1
zZA(z) + T
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Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke



Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

1

A2 =gz
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Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

I
(1-2)2
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Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

1 J—
(1-2)2

> (n+1)z"

n=0
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Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

Hence, an, =n + 1.

I
(1-2)2

= > n+1)z"

n=0
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Some Generating Functions

n-th sequence element

generating function

T
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Some Generating Functions

n-th sequence element

generating function

1

1
1-z

T
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Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
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Some Generating Functions

n-th sequence element

generating function

1

n+1

(")

1
1-z
1
(1-2)?
1

T
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Some Generating Functions

T

n-th sequence element generating function
1 1
1-z
1
n+1 —
(1-2)?
(n+k) 1
k (1 _ Z)k+1
n _Zz
(1-2)?
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Some Generating Functions

T

n-th sequence element generating function
1 1
1-z
1
n+1 —
(1-2)?
(n+k) 1
k (1 - z)k+1
n _z
(1-2)?
1
a‘}’l
1-az
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Some Generating Functions

T

n-th sequence element generating function
1 1
1-z
1
n+1 1-2)2
(n+k) 1
k (1 - z)k+1
n _Zz
(1-2)2
1
n
a 1-az
2 z(1+2)
" 1-2)3
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Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1- Z)k+1
z
(1-2)?
1
1-az
z(1+2)
(1-2)3

eZ

T

EADS
© Ernst Mayr, Harald Réacke
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Some Generating Functions

n-th sequence element

generating function

T
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Some Generating Functions

n-th sequence element

generating function

cfn

cF

T
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Some Generating Functions

T

n-th sequence element generating function
cfn cF
Sn + Gn F+G
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Some Generating Functions

T

n-th sequence element generating function
cfn cF
Sn+9n F+G
Z?:o Sfign-i F-G
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Some Generating Functions

n-th sequence element

generating function

cfn
Sn+9n
Z?:o Sfign-i

fn-x (n=k); 0 otw.

cF

F+G

ZkF
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Some Generating Functions

generating function

n-th sequence element
cfn cF
Sn+gn F+G
Z?:o Jign-i F-G
Fnk (n=k); 0 otw. zkF
o )

T
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Some Generating Functions

n-th sequence element

generating function

T

cfn cF

Sn+9n F+G

Z?:o Sfign-i F-G

Fnk (n=k); 0 otw. ZkF

F(z)

ico fi -

dF(z)
nfn z dz
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Some Generating Functions

n-th sequence element

generating function

cfn cF
Jn+9n F+G
Sito fign-i F-G
Fnk (n=k); 0 otw. zkF
ico fi f (_Z;
nfn z dl;(;)
c"fn F(cz)

T
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Solving Recursions with Generating Functions

1. Set A(z) = >0 anz™.
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:

T
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:
» partial fraction decomposition (Partialbruchzerlegung)

T
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

T
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Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),

where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.

Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

6. The coefficients of the resulting power series are the a,,.

T
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Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:
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Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = z anz"

n=0
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Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:
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Example: a, = 2a,-1,a¢9 = 1
1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) =ap + Z anz"
nx=1
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Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) =ap + Z anz"
nx=1

2. Plug in:
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Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) =ap + Z anz"
nx=1

2. Plug in:
A(z) =1+ > (Rap-1)z"

nx=1
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Example: a, = 2a,-1,a¢9 = 1
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Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.
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Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1
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Example: a, = 2a,-1,a¢9 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1
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Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0

T

EADS
© Ernst Mayr, Harald Rédcke
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Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0

=1+2z-A(z)

T

EADS
© Ernst Mayr, Harald Rédcke
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Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

4. Solve for A(z).

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0

=1+2z-A(z)

T
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6.4 Generating Functions =)



Example: a, = 2a,-1,a¢9 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > ap1z"!
nx=1

=1+2z > apz"

n=0
=1+4+2z-A(2)

4. Solve for A(z). )
Al2) =175
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Example: a, = 2a,-1,a¢9 = 1
5. Rewrite f(z) as a power series:

1

A2) = 1-2z
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Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

D> anz" = A(z) =

n=0

1-2z
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Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

D> anz" = A(z) =

n=0
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Example: a, = 3a,-1 + n,a9 =1

1. Set up generating function:
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Example: a, = 3a,-1 + n,a9 =1

1. Set up generating function:

A(z) = z anz"

n=0
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Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:
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Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

A(z) = Z anz"

n=0
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Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:

A(z) = Z anz"

n=0

=ap+ Z anz"
n>1
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Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

A(z) = Z anz"

n=0
=ao+ Z anz"
nx=1

=1+ > (Ban-1 +n)z"
nx=1
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Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

Z anz"

n=0
ag + Z anz"
n>1

1+ > (Ban-1 +n)z"

nx=1

A(z)

=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1
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Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

A(z) = z anz"
n=0
=ao+ Z anz"
n>1
=1+ > (Ban-1 +n)z"
nx=1
=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1
=1+3z > apz"+ > nz"
n=0 n=0
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Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

z anz"

n=0
ag + Z anz"
n>1

1+ > (Ban-1 +n)z"

nx=1

A(z)

=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1

=1+3z > apz"+ > nz"
n=0 n=0

z
= 1+32A(2)+m
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Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):
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Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):

A(z) =1+ 3zA(z2) +

_z
(1-z

)2
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Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):

A(z) =1+ 3zA(z2) +

gives

1-2)2+z
(1-32)(1-2)2

A(z) =

_Zz
(1-z

)2
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Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):
z
A(Z) =1+ BZA(Z) + m
gives

(1-2)2+z z2—z+1

A =T 3a-22 T -390 -2
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:
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Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1
(1-32)(1-2)2
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 A B C

(1-32)(1-2)2 - 1—3z+1—z+ (1-2)2
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Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 1A . B . C
(1-32)(1-2)2 1-3z 1-z (1-2)2

This gives

Z2-z41=A(1-2%+B(1-32)(1-2)+C(1-32)
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Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 1A . B . C
(1-32)(1-2)2 1-3z 1-z (1-2)2

This gives
Z2-z41=A(1-2%+B(1-32)(1-2)+C(1-32)

=A(1-2z+2%)+B(1-4z+32%) +C(1-32)
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Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 1A . B . C
(1-32)(1-2)2 1-3z 1-z (1-2)2

This gives
Z2-z41=A(1-2%+B(1-32)(1-2)+C(1-32)
=A(1-2z+2%)+B(1-4z+32%) +C(1-32)

=(A+3B)z2+ (-2A-4B-3C)z+ (A+B+ ()
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
which gives
7 1
A_Z B__Z C =

N | =
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

m EADS 6.4 Generating Functions
© Ernst Mayr, Harald Réacke



Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

7 1 1 1 1
AD =1 773,713 1-2 2

1

(1-2)2
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(z)_i-l—Bz_Z'l—z_E'(1—2)2
. 23"2”—1- zz"—l- > (n+1)z"
4 4 2
n=0 n=0 n=0
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(z)_i-l—Bz_Z 1-z 2 (1-2z)2
. > 3nzn— . 1 > (n+1)z"
4 n=0 4 nzO n=0
— z n_l_l n
=2 (33" -5 5n+D)z
n=0
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(”:Zl_gz‘zl_z‘i'm
. > 3nzn - = Z"— = > (m+Dz"
4 n=0 4 n=0 n=0
v (ZL.gn_ 11
_n§0(4 3"~ 2(n+1))
_ 7oan_ 1 3\ »
nZZ:O(4 3" -an 4)2
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Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A(z)_ill—Bz_Z'l—z_E'(1—2)2
_ Z i non _ l_ n/_‘l . n
=2 3"z 1 -3 > (n+1)z

>0 n=0

n
_ 7 on 101 n
_n§0(4 3" -5 2(n+1))z

7 1 3

s

6. This means a, = 53" — 3n —
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6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=Jn-1-fnoforn=2.
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6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=JSn1-fnoforn=2.
Define

In :=10g fn .

m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke



6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

gn =9n-1+9gn-2forn=2
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6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

In=9n-1+9gn-2 forn=2
g1 =log2 = 1(for log = log,), go =0
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6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

In =9n-1+gn-2forn=2
g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

‘m EADS 6.5 Transformation of the Recurrence
© Ernst Mayr, Harald Réacke



6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=In-1"fno2forn=>2.
Define
In :=10g fn .
Then

In =9gn-1+gn-2forn=2

g1 =log?2 = 1(for log = logy), go =0
gn = F,, (n-th Fibonacci number)

fn = ZF"
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6.5 Transformation of the Recurrence

Example 7

fi=1
fn=3f%+n;forn=2k,kzl;
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6.5 Transformation of the Recurrence

Example 7

fi=1
fn=3f%+n;forn=2k,kzl;

Define
gk = fox .
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6.5 Transformation of the Recurrence

Example 7
fi=1
fn=3fn +m; form=2Kk=1;
Define
Ik = fok -
Then:
go=1
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6.5 Transformation of the Recurrence

Example 7
fi=1
fn=3fn +m; form=2Kk=1;
Define
Ik = fok -
Then:
go=1

gk =3gk1+2K k=1

m EADS 6.5 Transformation of the Recurrence
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6 Recurrences

We get

gk =3 [gr-1] + 2K

T
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6 Recurrences

We get

Gk =

w W

[gr-1] + 2%
[3gk_2 + 2"‘1] + 2k

T
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6 Recurrences

We get

gk =3 [gr-1] +2F
=3 [3gk_2 + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k

T
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6.5 Transformation of the Recurrence



6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [3gk_2 + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

T
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6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

= 33gy_3 + 322k=2 4 3pk-1 4 pk

T
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6 Recurrences

We get

gk =3[gk-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k
= 33gy_3 + 322k=2 4 3pk-1 4 pk
k

_ok. Y (;)i

i=0

T
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6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

= 33gy_3 + 322k=2 4 3pk-1 4 pk

_ok. Y (;)i

T

i=0
3Vk+1 _
_ 2k . (2) 1
1/2
EADS 6.5 Transformation of the Recurrence E
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6 Recurrences

We get

gk =3 [gr-1] +2*
=3 [Sgk_z + 2"‘1] + 2k
=32 [gk_n] +32k"1 4 2k
=3%[3gk3 + 2K2] + 32k71 4 2k

= 33gy_3 + 322k=2 4 3pk-1 4 pk

_ok. Y (;)i

T

i=0
3Vk+1 _
=2k . (2)71 _ 3k+1 _ ok+1
1/2
EADS 6.5 Transformation of the Recurrence E
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6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fu=3-3k-2.2k

T
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6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k _2. 2k
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6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _92. 2k
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6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _92. 2k

=3nlo83 _2p .

© Ernst Mayr, Harald Rédcke

6.5 Transformation of the Recurrence
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