
8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ element S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ boolean S.is-empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
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8 Priority Queues

An addressable Priority Queue also supports:

ñ handle S.insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S.delete(h): Deletes element specified through handle h.

ñ S.decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least

k before the operation.
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Dijkstra’s Shortest Path Algorithm

Algorithm 18 Shortest-Path(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. (v,x) ∈ E do
11: if x.key > v.key+d(v,x) then
12: S.decrease-key(hx,v.key+d(v,x));
13: x.key← v.key+d(v,x);
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Prim’s Minimum Spanning Tree Algorithm

Algorithm 19 Prim-MST(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: pred-fields encode MST;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. {v,x} ∈ E do
11: if x.key > d(v,x) then
12: S.decrease-key(hx,d(v,x));
13: x.key← d(v,x);
14: x.pred← v;
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Analysis of Dijkstra and Prim

Both algorithms require:

ñ 1 build() operation

ñ |V | insert() operations

ñ |V | delete-min() operations

ñ |V | is-empty() operations

ñ |E| decrease-key() operations

How good a running time can we obtain?
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8 Priority Queues

Operation
Binary
Heap

BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1
is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty heap
which then costs time 1.

The standard version of binary heaps is not addressable, and hence
does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.
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8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time

O((|V | + |E|) log |V |).

Using Fibonacci Heaps, Prim and Dijkstra run in time

O(|V | log |V | + |E|).
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8.1 Binary Heaps

ñ Nearly complete binary tree; only the last level is not full,

and this one is filled from left to right.

ñ Heap property: A node’s key is not larger than the key of

one of its children.

7
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19311117

13 1225 43 80
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Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).
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8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost

element

7

159

19311117

13 1225 43 80 x
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8.1 Binary Heaps
Maintain a pointer to the last element x.
ñ We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost

element; insert a new element as a left child;
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Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

159

19311117

13 1225 43 80 x1

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.
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Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.
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Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.
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Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.
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Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.
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Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

916

19121718

27 2025 43 13 x1 e

At its new position e may either travel up or down in the tree

(but not both directions).
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Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).
ñ insert(k): insert at x and bubble up. Time O(logn).
ñ delete(h): swap with x and bubble up or sift-down. Time

O(logn).
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Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18 17

16 15 14 13 11 12 10 9 5 7 6 8 4 2 3 35

∑

levels `

2` · (h− `) = O(2h) = O(n)
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Binary Heaps

Operations:

ñ minimum(): Return the root-element. Time O(1).
ñ is-empty(): Check whether root-pointer is null. Time O(1).
ñ insert(k): Insert at x and bubble up. Time O(logn).
ñ delete(h): Swap with x and bubble up or sift-down. Time

O(logn).
ñ build(x1, . . . , xn): Insert elements arbitrarily; then do

sift-down operations starting with the lowest layer in the

tree. Time O(n).
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Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements

don’t maintain their positions and therefore there are no stable

handles.
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8.2 Binomial Heaps

Operation
Binary
Heap

BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1
is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn log n 1
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Binomial Trees

B0 B1 B2 B3 B4

Bt−1

Bt−1

Bt
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Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.
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Binomial Trees

B4

B3

B2

B1

B0

Deleting the root of B5 leaves sub-trees B4, B3, B2, B1, and B0.
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Binomial Trees

B4

B3

B2

B1

B0

Deleting the leaf furthest from the root (in B5) leaves a path that

connects the roots of sub-trees B4, B3, B2, B1, and B0.
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Binomial Trees

Bk−1

Bk−1

Bk

(
k−1
`

)

(
k−1
`−1

)

The number of nodes on level ` in tree Bk is therefore

(
k− 1
` − 1

)
+
(
k− 1
`

)
=
(
k
`

)
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Binomial Trees

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bn, . . . , b1, b0 is obtained by

setting the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft
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8.2 Binomial Heaps

ñ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

ñ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .
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Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For

example the above heap contains trees B0, B1, and B4.
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the binary

representation of n.
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Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote binary representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.
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ñ The trees are stored in a single-linked list; ordered by

dimension/size.
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial

trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.
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8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 332/609



8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 332/609



8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 332/609



8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
ñ Create a new heap S′ that contains just the element x.

ñ Execute S.merge(S′).
ñ Time: O(logn).
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8.2 Binomial Heaps

S.minimum():
ñ Find the minimum key-value among all roots.

ñ Time: O(logn).
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8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 335/609



8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 335/609



8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 335/609



8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 335/609



8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 335/609



8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Räcke 335/609



8.2 Binomial Heaps

S.decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).
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8.2 Binomial Heaps

S.delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).
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Amortized Analysis

Definition 1

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with

an empty data-structure) that operate on at most n elements,

and let ki denote the number of occurences of opi() within this

sequence. Then the actual running time must be at most∑
i ki · ti(n).
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Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i=1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound

on the total cost.
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ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i=1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi
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Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the

stack.

ñ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.
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ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.
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Example: Stack

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .
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Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).
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Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the

number of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 344/609



8.3 Fibonacci Heaps

Additional implementation details:

ñ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

ñ Every node stores a boolean value x.marked that specifies

whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:

ñ t(S) denotes the number of trees in the heap.

ñ m(S) denotes the number of marked nodes.

ñ We use the potential function Φ(S) = t(S)+ 2m(S).
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The potential is Φ(S) = 5+ 2 · 3 = 11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S.minimum()

ñ Access through the min-pointer.

ñ Actual cost O(1).
ñ No change in potential.

ñ Amortized cost O(1).

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 348/609



8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer
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Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.
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x

Running time:

ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).
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ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Actual cost for delete-min()
ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()

ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will

be a set of distinct binomial trees, and, hence, the Fibonacci

heap will be (more or less) a Binomial heap right after the

consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 354/609



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will

be a set of distinct binomial trees, and, hence, the Fibonacci

heap will be (more or less) a Binomial heap right after the

consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 354/609



Fibonacci Heaps: decrease-key(handle h, v)
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Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.
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Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x,

and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x (unless it’s a root).
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 355/609



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(`+1)+c(4−`) ≤ (c2−c)`+4c+c2 = O(1) ,
if c ≥ c2.
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Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
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Delete node

H. delete(x):
ñ decrease value of x to −∞.

ñ delete-min.

Amortized cost: O(Dn)
ñ O(1) for decrease-key.

ñ O(Dn) for delete-min.
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8.3 Fibonacci Heaps

Lemma 2

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
{

0 if i = 1

i− 2 if i > 1
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8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.
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8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si
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8.3 Fibonacci Heaps

Definition 3

Consider the following non-standard Fibonacci type sequence:

Fk =




1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+∑k−2

i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.
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