8 Priority Queues

A

Priority Queue S is a dynamic set data structure that supports

the following operations:

» S.build(x1,...,xn): Creates a data-structure that contains
just the elements x1,...,Xxy.

» S.insert(x): Adds element x to the data-structure.

» element S.minimum(): Returns an element x € S with
minimum key-value key[x].

» element S.delete-min(): Deletes the element with minimum
key-value from S and returns it.

» boolean S.is-empty(): Returns true if the data-structure is
empty and false otherwise.

Sometimes we also have

Tt

» S.merge(S’): S:=SuUS’; S :=0.

EADS
© Ernst Mayr, Harald Racke

301

8 Priority Queues

An addressable Priority Queue also supports:
» handle S.insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.
> S.delete(h): Deletes element specified through handle h.

» S.decrease-key(h, k): Decreases the key of the element
specified by handle h to k. Assumes that the key is at least
k before the operation.

‘m EADS 8 Priority Queues
© Ernst Mayr, Harald Racke

302

Dijkstra’s Shortest Path Algorithm

Algorithm 18 Shortest-Path(G = (V,E,d),s € V)

1: Input: weighted graph G = (V,E, d); start vertex s;

2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue

4: forallveV)\ {s} do

5 v.key — oo;

6: hy < S.insert(v);

7: s.key < 0; S.insert(s);

8: while S.is-empty() = false do

9: v « S.delete-min();

10: forall x e Vs.t. (v,x) € Edo

11: if x.key > v.key +d (v, x) then

12: S.decrease-key(hy,v.key +d(v, x));
13: x.key — v.key +d (v, x);

‘m EADS 8 Priority Queues
© Ernst Mayr, Harald Réacke

303

Prim’s Minimum Spanning Tree Algorithm

Tt

Algorithm 19 Prim-MST(G = (V,E,d),s € V)

1: Input: weighted graph G = (V,E,d); start vertex s;
2: Output: pred-fields encode MST;

3: S.build(); // build empty priority queue

4: forallv e V\ {s} do

5 v.key « oo;

6: hy < S.insert(v);

7: s.key < 0; S.insert(s);

8: while S.is-empty() = false do

9: v < S.delete-min();
10: forall x e Vs.t. {v,x} €E do
11; if x.key > d(v, x) then
12: S.decrease-key(hy,d (v, x));
13: x.key — d(v,x);
14: x.pred < v;
EADS 8 Priority Queues

© Ernst Mayr, Harald Réacke

304

Analysis of Dijkstra and Prim

Both algorithms require:

v

1 build() operation

v

|V| insert() operations

v

|V| delete-min() operations

v

|V] is-empty() operations

v

|E| decrease-key() operations

How good a running time can we obtain?

‘m EADS 8 Priority Queues
© Ernst Mayr, Harald Racke

305

8 Priority Queues

) Binary BST Binomial Fibonafci
Heap Heap Heap
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

Note that most applications use build() only to create an empty
heap which then costs time 1.

__

* Fibonacci heaps only give an : |** The standard version of binary heaps is not address- :
amortized guarantee. : 1 able. Hence, it does not support a delete. |

‘m EADS 8 Priority Queues
© Ernst Mayr, Harald Réacke 306

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time
O((IV] + |E]) log [V]).

Using Fibonacci Heaps, Prim and Dijkstra run in time
O(lV]log V| + |E]).

‘m EADS 8 Priority Queues
© Ernst Mayr, Harald Réacke

307

8.1 Binary Heaps
» Nearly complete binary tree; only the last level is not full,
and this one is filled from left to right.

» Heap property: A node’s key is not larger than the key of
one of its children.

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke 308

Binary Heaps

Operations:

Tt

» minimum(): return the root-element. Time O(1).

> is-empty(): check whether root-pointer is null. Time O(1).

EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke

309

8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the predecessor of x
(last element when x is deleted) in time @ (logn).

go up until the last edge used was a right edge.
go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost
element

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Réacke

310

8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.
go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost
element; insert a new element as a left child;

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke

311

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

Note that an exchange can either be done by moving the data or
by changing pointers. The latter method leads to an addressable
priority queue.

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke

312

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

At its new position e may either travel up or down in the tree
(but not both directions).

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke

313

Binary Heaps

Operations:

» minimum(): return the root-element. Time O(1).

> is-empty(): check whether root-pointer is null. Time O(1).

> insert(k): insert at x and bubble up. Time O(logn).

> delete(h): swap with x and bubble up or sift-down. Time
O(logn).

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Réacke

314

Build Heap

We can build a heap in linear time:

S 2t (h—0) =002 =0m)

levels ¢

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke 315

Binary Heaps

Operations:
» minimum(): Return the root-element. Time O(1).

> is-empty(): Check whether root-pointer is null. Time O(1).

> insert(k): Insert at x and bubble up. Time O(logn).

> delete(h): Swap with x and bubble up or sift-down. Time
O(logn).

> build(x1, ..., xn): Insert elements arbitrarily; then do
sift-down operations starting with the lowest layer in the
tree. Time O(n).

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Réacke

316

Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n— 1] be an array
i-1

> The parent of i-th element is at position [=~].

» The left child of i-th element is at position 2i + 1.
» The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description
on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements
don’t maintain their positions and therefore there are no stable
handles.

m EADS 8.1 Binary Heaps
© Ernst Mayr, Harald Racke

8.2 Binomial Heaps

Operation Binary BST Binomial Fibonafci
Heap Heap Heap
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

© Ernst Mayr, Harald Réacke

8.2 Binomial Heaps

318

Binomial Trees

i it

By

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Réacke 319

Binomial Trees

Properties of Binomial Trees

\4

Bi has 2k nodes.
By has height k.
The root of By has degree k.

v

v

v

By has (’;) nodes on level £.

v

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

Deleting the root of By gives trees By, By, ...

320

Binomial Trees

Bo
B
B>
B3

By

Deleting the root of Bs leaves sub-trees Bs, B3, B2, B1, and By.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Réacke

321

Binomial Trees

By
B3
B>
B

By

Deleting the leaf furthest from the root (in Bs) leaves a path that
connects the roots of sub-trees By, B3, B», By, and Bg.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Réacke

322

Binomial Trees

Bg

Bk-1

OII,O/

i“i’

The number of nodes on level £ in tree By is therefore

k-1
£-1

© Ernst Mayr, Harald Réacke

)< (4=

8.2 Binomial Heaps

k
'

)

323

Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b1, by is obtained by
setting the least significant 1-bit to 0.

The £-th level contains nodes that have £ 1’s in their label.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 324

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
» A parent-pointer points to the parent node.

» Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).

parent

left X right
child
o)
C O—0O

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

325

8.2 Binomial Heaps

» Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

» We can add a child-tree T to a hode x in constant time if we
are given a pointer to x and a pointer to the root of T.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Réacke

326

Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For
example the above heap contains trees By, By, and Bs.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

327

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let By,, Bk,, Bk;, ki < ki+1 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = 3; 2% must hold. But since the k; are all distinct this

means that the k; define the non-zero bit-positions in the binary
representation of n.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

328

Binomial Heap

Properties of a heap with n keys:

>

>

>

>

Letn = bgbi_1,...,bo denote binary representation of n.

The heap contains tree B; iff b; = 1.

Hence, at most [logn] + 1 trees.

The minimum must be contained in one of the roots.
The height of the largest tree is at most [logn|.

The trees are stored in a single-linked list; ordered by
dimension/size.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

329

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with :'ﬁo't; that we do not just do a !
different binomial trees. We can simply 1concatenation as we want to

h I | keep the trees in the list
merge the tree-lists. sorted according to size.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

1
L

Merging two trees of the same size: Add
the tree with larger root-value as a child to
the other tree.

(2)
5y © @

s © ©
For more trees the technique is analogous @2
to binary addition.

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 330

@@
®&
OO

14

(4)
(147149 @9

®

$ ¢
19 @9 @
@

8.2 Binomial Heaps

S1.merge(S>2):
» Analogous to binary addition.
» Time is proportional to the number of trees in both heaps.

» Time: O(logn).

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

332

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):

» Create a new heap S’ that contains just the element x.

» Execute S.merge(S’).

» Time: O(logn).

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

333

8.2 Binomial Heaps
S.minimum():

» Find the minimum key-value among all roots.

» Time: O(logn).

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Réacke

334

8.2 Binomial Heaps

S.delete-min():

>

>

>

Find the minimum key-value among all roots.
Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just
O(logn) trees).

Compute S.merge(S’).
Time: O(logn).

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

335

8.2 Binomial Heaps

S.decrease-key(handle h):
» Decrease the key of the element pointed to by h.
» Bubble the element up in the tree until the heap property is

fulfilled.
» Time: O(logn) since the trees have height O(logn).

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

336

8.2 Binomial Heaps

S.delete(handle h):
» Execute S.decrease-key(h, —»).
» Execute S.delete-min().

» Time: O(logn).

m EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

337

Amortized Analysis

Definition 1

A data structure with operations op; (), ...,0pk() has amortized
running times t1,..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most
>iki-ti(n).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

338

Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

Ci=c¢i+®(D;) - (D) .
» Show that ®(D;) = ®(Dy).

Then
k k

k
Dci< > ci+®(Dy) - (Do) = D ¢

i=1 i=1 i=1

This means the amortized costs can be used to derive a bound
on the total cost.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

339

Example: Stack

Stack
» S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
» S.push(): cost 1.
> S.pop(): cost 1.
» S. multipop(k): cost min{size, k} = k.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

340

Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

Cpush = Cpush + AP =1+1<2 . :_l\Io_te_t_hz_it_tHe_;n_al_y;is_ I
1 becomes wrong if pop() or
> S. pop() cost : multipop() are called on an

| empty stack.

> S. multipop(k): cost

C‘mp = Cmp + A® = min{size, k} — min{size,k} <0 .

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 341

Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

» Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

342

Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from O to 1:

Co1=Co1+ADP=1+1<2.
» Changing bit from 1 to O:
él_.0:C1_.o+ACD=1—150 .

» |Increment: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kC‘lqo + C’Oql < 2.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 343

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke 344

8.3 Fibonacci Heaps

Additional implementation details:
» Every node x stores its degree in a field x.degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x.marked that specifies
whether x is marked or not.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

345

8.3 Fibonacci Heaps

The potential function:
» t(S) denotes the number of trees in the heap.

» m(S) denotes the number of marked nodes.

» We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

346

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

347

8.3 Fibonacci Heaps

S.

Tt

minimum()

» Access through the min-pointer.

v

Actual cost O(1).

v

v

Amortized cost O(1).

EADS
© Ernst Mayr, Harald Réacke

No change in potential.

8.3 Fibonacci Heaps

348

- In the figure below the dashed edges are

83 FibonaCCi HeapS replaced by red edges.

S.merge(S’)

» Merge the root lists.
» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.
» Hence, amortized cost is O(1).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

I
: e The minimum of the left heap becomes
: the new minimum of the merged heap.

349

'x is inserted next to the min-pointer as

8.3 Fibonacci HeapS | this is our entry point into the root-list.

S. insert(x)
» Create a new tree containing x.
» Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
» Amortized costis c + O(1) = O(1).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke 350

' D(min) is the number of !

83 FibonaCCi HeapS ! children of the node that E

I P
| stores the minimum.

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (¢t + D(min)) - O(1).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 351

' D(min) is the number of !

83 FibonaCCi HeapS ! children of the node that E

I P
| stores the minimum.

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (¢t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 351

8.3 Fibonacci Heaps

Consolidate:

current

: During the consolidation we traverse the root list. Whenever we discover two
1 trees that have the same degree we merge these trees. In order to efficiently
: check whether two trees have the same degree, we use an array that contains
 for every degree value d a pointer to a tree left of the current pointer whose root

1 has degree d (if such a tree exist).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

352

8.3 Fibonacci Heaps

Consolidate:

current

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

352

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current / l

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current / l

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352

8.3 Fibonacci Heaps

Consolidate:

current

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

352

8.3 Fibonacci Heaps

Consolidate:

current

© Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

352

8.3 Fibonacci Heaps

Consolidate:

current k\/'

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352

8.3 Fibonacci Heaps

Consolidate:

current k\/'

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 352

8.3 Fibonacci Heaps

Consolidate:

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

352

8.3 Fib i H 't and t’ denote the number of trees before and
L] Ibonacci eaps 1 after the delete-min() operation, respectively.
: Dy, is an upper bound on the degree (i.e., num-

Actual cost for delete-min() Loerofhldenofatesode .

» At most D, +t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, +t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.

» Therefore A® <D, +1—t;

» We can pay ¢ - (t — Dy, — 1) from the potential decrease.

» The amortized cost is
c1-Dp+t)y—c-(t—Dyp—1)

<(cp+c)Dp+(c1—-c)t+c<2c(Dp+1) <ODy)

forc=cy .

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 353

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy, <logn.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 354

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

355

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.

» Cut the parent edge of x, and make x into a root.

» Adjust min-pointers, if necessary. ' Marking a node can be viewed as a |

A 1 first step towards becoming a
>
Execute the following: root. The first time x loses a child

p — parent[x]; : it is marked; the second time it

while (p is marked) | 95 2 elle [5 i e 1l &l [T |

pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp,

if p is unmarked and not a root mark it;

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke 356

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢».

Amortized cost:
» t'=t+4,as every cut creates one new root.

»m <m—-{E-1)+1=m—¥L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

» AP <L +2(—0+2)=4-7 It—;n—d—t ----------)

number of
» Amortized cost is at most '”ees before and after
operation
c+1)+c(4—4) < (cp—c)l+4c+cr = (1) Im and m’: number of
L | marked nodes before
if c = co. 1 and after operation.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 357

Delete node

H. delete(x):
» decrease value of x to —co.

» delete-min.

Amortized cost: @ (D)
» O(1) for decrease-key.

» O(Dn) for delete-min.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Réacke

358

8.3 Fibonacci Heaps

Lemma 2
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(yi) = { i-2 ifi>1

:The marking process is very important for the proof of
1 this lemma. It ensures that a node can have lost at most
: one child since the last time it became a non-root node.
| When losing a first child the node gets marked; when
1 losing the second child it is cut from the parent and
: made into a root.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

359

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,»;—1 were already
linked to x.

» Hence, at this time degree(x) = i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

360

8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so =1 and sy = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits

children.
k
Sk=2+ Z size(y;)
i=2
k
>2+ Z Si—2
i=2

k-2
=2+ Z Si
i=0

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 361

8.3 Fibonacci Heaps

Definition 3
Consider the following non-standard Fibonacci type sequence:

1 ifk=0
Fp=1 2 ifk=1
Fy_1 + Fx_» ifk>2

Facts:
1. Fx = ¢k.
2. Fork>2: F =2+ >K2F.
The above facts can be easily proved by induction. From this it

follows that sx > Fx > ¢k, which gives that the maximum degree
in a Fibonacci heap is logarithmic.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke

362

Priority Queues

Bibliography
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009
[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fi-
bonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial
heaps.

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps
are dealt with in Exercise 6.11.

‘m EADS 8.3 Fibonacci Heaps
© Ernst Mayr, Harald Racke 363

	Priority Queues
	Binary Heaps
	Binomial Heaps
	Fibonacci Heaps

