
Mincost Flow

Problem Definition:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

ñ G = (V , E) is a directed graph.

ñ u : E → R+0 ∪ {∞} is the capacity function.

ñ c : E → R is the cost function

(note that c(e) may be negative).

ñ b : V → R,
∑
v∈V b(v) = 0 is a demand function.
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Solve Maxflow Using Mincost Flow
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ñ Given a flow network for a standard maxflow problem.
ñ Set b(v) = 0 for every node. Keep the capacity function u

for all edges. Set the cost c(e) for every edge to 0.
ñ Add an edge from t to s with infinite capacity and cost −1.
ñ Then, val(f∗) = − cost(fmin), where f∗ is a maxflow, and

fmin is a mincost-flow.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

ñ Given a flow network for a standard maxflow problem, and

a value k.

ñ Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

ñ Set edge-costs to zero, and keep the capacities.

ñ There exists a maxflow of value k if and only if the

mincost-flow problem is feasible.
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Generalization

Our model:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
∑
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

A more general model?

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;
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Generalization

Differences

ñ Flow along an edge e may have non-zero lower bound `(e).
ñ Flow along e may have negative upper bound u(e).
ñ The demand at a node v may have lower bound a(v) and

upper bound b(v) instead of just lower bound = upper

bound = b(v).
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Reduction I

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):

Add new node r .

Add edge (r , v) for all v ∈ V .

Set `(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −∑v∈V b(v).
−∑v b(v) is negative; hence r is only sending flow.

v

r

u(e
)=
b(v

)− a
(v)

`(e
) = 0

c(e
) = 0
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Reduction II

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either `(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
`(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) ≠ 0 we can transform the graph so that c(e) = 0.
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Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

x

b(x) = b(u)
u v

+
δ−
δ

+δ

−δ
−δ +
δ

u(e)= ∞
`(e) = −∞
c(e) = δ ≠ 0

−δ

Additionally we set b(u) = 0.
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Reduction III

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) ≠ −∞:

u v

u v

u(e)=d ≠∞
`(e)=−∞
c(e)=a

u(e)=∞
`(e)=−d
c(e)=−a

Replace the edge by an edge in opposite direction.
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Reduction IV

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) = 0:

u v

u v

u(e)
`(e)=d ≠ −∞
c(e)

u(e)− d
`(e) = 0
c(e)

ū v̄
b(ū) = d b(v̄) = −d

The added edges have infinite capacity and cost c(e)/2.
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Applications

Caterer Problem

ñ She needs to supply ri napkins on N successive days.

ñ She can buy new napkins at p cents each.

ñ She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

ñ She can use a slow laundry that takes k > m days and costs

s cents each.

ñ At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

ñ Minimize cost.
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day edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = ri;
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Residual Graph

The residual graph for a mincost flow is exactly defined as the

residual graph for standard flows, with the only exception that

one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity

z and a cost of −c((u,v)).

EADS 15 Mincost Flow

© Ernst Mayr, Harald Räcke 534/609



Residual Graph

The residual graph for a mincost flow is exactly defined as the

residual graph for standard flows, with the only exception that

one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity

z and a cost of −c((u,v)).

EADS 15 Mincost Flow

© Ernst Mayr, Harald Räcke 534/609



15 Mincost Flow

A circulation in a graph G = (V , E) is a function f : E → R+ that

has an excess flow f(v) = 0 for every node v ∈ V .

A circulation is feasible if it fulfills capacity constraints, i.e.,

f(e) ≤ u(e) for every edge of G.
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Lemma 1

A given flow is a mincost-flow if and only if the corresponding

residual graph Gf does not have a feasible circulation of

negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in

the residual graph.

Then f + g is a feasible flow with cost

cost(f )+ cost(g) < cost(f ). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f∗ be a min-cost flow.

We need to show that the residual graph has a feasible

circulation with negative cost.

Clearly f∗ − f is a circulation of negative cost. One can also

easily see that it is feasible for the residual graph. (after

sending −f in the residual graph (pushing all flow back) we

arrive at the original graph; for this f∗ is clearly feasible)
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15 Mincost Flow

Lemma 2

A graph (without zero-capacity edges) has a feasible circulation

of negative cost if and only if it has a negative cycle w.r.t.

edge-weights c : E → R.

Proof.

ñ Suppose that we have a negative cost circulation.

ñ Find directed path only using edges that have non-zero flow.

ñ If this path has negative cost you are done.

ñ Otherwise send flow in opposite direction along the cycle

until the bottleneck edge(s) does not carry any flow.

ñ You still have a circulation with negative cost.

ñ Repeat.
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15 Mincost Flow

Algorithm 51 CycleCanceling(G = (V , E), c,u, b)
1: establish a feasible flow f in G
2: while Gf contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4: δ←min{uf (e) | e ∈ Z}
5: augment δ units along Z and update Gf
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How do we find the initial feasible flow?

x1

x2

x3

x4

x5

x6

x7

ts −b(x1)−b(x1)
−b(x2)−b(x2)

−b(x3)
−b(x3)

b(x4)b(x4)

b(x5)b(x5)

b(x6)
b(x6)

b(x7)b(x7)

ñ Connect new node s to all nodes with negative b(v)-value.

ñ Connect nodes with positive b(v)-value to a new node t.
ñ There exist a feasible flow in the original graph iff in the

resulting graph there exists an s-t flow of value∑
v :b(v)<0

(−b(v)) =
∑

v :b(v)>0

b(v) .



15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow

Lemma 3

The improving cycle algorithm runs in time O(n2m2CU), for

integer capacities and costs, when for all edges e, |c(e)| ≤ C and

|u(e)| ≤ U .

ñ Running time of Bellman-Ford is O(mn).
ñ Pushing flow along the cycle can be done in time O(n).
ñ Each iteration decreases the total cost by at least 1.

ñ The true optimum cost must lie in the interval

[−mCU, . . . ,+mCU].

Note that this lemma is weak since it does not allow for edges

with infinite capacity.
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15 Mincost Flow

A general mincost flow problem is of the following form:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

Lemma 4 (without proof)

A general mincost flow problem can be solved in polynomial

time.
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