How to find an augmenting path?

Construct an alternating tree.

Flowers and Blossoms

Definition 9

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

EADS 21 Maximum Matching in General Graphs

589

Flowers and Blossoms

Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.

EADS ©Ernst Mayr, Harald Räcke 21 Maximum Matching in General Graphs

Shrinking Blossoms

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

592

594

EADS © Ernst Mayr, Harald Räcke

Shrinking Blossoms

- Edges of *T* that connect a node *u* not in *B* to a node in *B* become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in *B* to a node in *B* become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in *B* become connected to b in G'.

EADS © Ernst Mayr, Harald Räcke EADS

21 Maximum Matching in General Graphs

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, *B* the blossom, and *w* the base. Let graph G' = G/Bwith pseudonode b. Let M' be the matching in the contracted graph.

Lemma 10

EADS

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then Gcontains an augmenting path starting at r w.r.t. matching M.

597

595

Example: Bl	ossom Algorithm	
	Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.	
EADS © Ernst Mayr, H	21 Maximum Matching in General Graphs arald Räcke	596

Correctness

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

EADS	21 Maximum Matching in General Graphs	
UUU©Ernst Mayr, Harald Räcke		599

Correctness

Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching *M* then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Correctness

Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.

Correctness

Proof.

EADS

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node *j* and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

EADS © Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke	

601

Algorithm 54 search(*r*, *found*)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* \leftarrow false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize *list* \leftarrow {r}
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine(i, found)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

EADS © Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		604

	prithm 55 examine(<i>i</i> , found)	
1: T	or all $j \in \bar{A}(i)$ do	
2:	if <i>j</i> is even then contract(<i>i</i> , <i>j</i>) and return	
3:	if <i>j</i> is unmatched then	
4:	$q \leftarrow j;$	
5:	$\operatorname{pred}(q) \leftarrow i;$	
6:	<i>found</i> ← true;	
7:	return	
8:	if <i>j</i> is matched and unlabeled then	
9:	$\operatorname{pred}(j) \leftarrow i;$	
10:	$pred(mate(j)) \leftarrow j;$	
11:	add mate (j) to <i>list</i>	

Examine the neighbours of a node i

Algorith	n 56 contract (i, j)
1: trace	pred-indices of i and j to identify a blossom B
2: create	e new node b and set $\overline{A}(b) \leftarrow \bigcup_{x \in B} \overline{A}(x)$
3: label	b even and add to <i>list</i>
4: updat	e $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$
5: form a	a circular double linked list of nodes in B
6: delete	nodes in <i>B</i> from the graph
	Get all nodes of the blossom. Time: $\mathcal{O}(m)$
	21 Maximum Matching in General Graphs

Algorithm 56 contract(*i*, *j*)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Identify all	neighbours of b .	
--------------	--------------------------	--

Time: $\mathcal{O}(m)$ (how?)

Algorith	n 56 contract (i, j)
1: trace	pred-indices of i and j to identify a blossom B
2: create	new node b and set $\overline{A}(b) \leftarrow \cup_{x \in B} \overline{A}(x)$
3: label i	b even and add to <i>list</i>
4: updat	e $ar{A}(j) \leftarrow ar{A}(j) \cup \{b\}$ for each $j \in ar{A}(b)$
5: form a	a circular double linked list of nodes in B
6: delete	nodes in <i>B</i> from the graph
	<i>b</i> will be an even node, and it has unexamined neighbours.
EADS © Ernst Mayr, Ha	21 Maximum Matching in General Graphs

EADS 21 Maximum Matching in General Graphs

607

Algorithm 56 contract(*i*, *j*)

1: trace pred-indices of i and j to identify a blossom B

- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

Analysis

nn EADS

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most *n* contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most nof them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

21 Maximum Matching in General Graphs

21 Maximum Matching in General Graphs © Ernst Mayr, Harald Räcke

