
Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality
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Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality
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Maxflow Formulation
ñ Input: undirected, bipartite graph G = (L] R ] {s, t}, E′).
ñ Direct all edges from L to R.
ñ Add source s and connect it to all nodes on the left.
ñ Add t and connect all nodes on the right to t.
ñ All edges have unit capacity.
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Proof

Max cardinality matching in G ≤ value of maxflow in G′

ñ Given a maximum matching M of cardinality k.

ñ Consider flow f that sends one unit along each of k paths.

ñ f is a flow and has cardinality k.
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Proof
Max cardinality matching in G ≥ value of maxflow in G′

ñ Let f be a maxflow in G′ of value k
ñ Integrality theorem ⇒ k integral; we can assume f is 0/1.

ñ Consider M= set of edges from L to R with f(e) = 1.

ñ Each node in L and R participates in at most one edge in M.

ñ |M| = k, as the flow must use at least k middle edges.
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13.1 Matching

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
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Baseball Elimination

team wins losses remaining games

i wi `i Atl Phi NY Mon

Atlanta 83 71 − 1 6 1
Philadelphia 80 79 1 − 0 2
New York 78 78 6 0 − 0
Montreal 77 82 1 2 0 −

Which team can end the season with most wins?

ñ Montreal is eliminated, since even after winning all remaining
games there are only 80 wins.

ñ But also Philadelphia is eliminated. Why?
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Baseball Elimination

Formal definition of the problem:

ñ Given a set S of teams, and one specific team z ∈ S.

ñ Team x has already won wx games.

ñ Team x still has to play team y, rxy times.

ñ Does team z still have a chance to finish with the most

number of wins.

EADS 13.2 Baseball Elimination

© Ernst Mayr, Harald Räcke 478

Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still

obtain.
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Idea. Distribute the results of remaining games in such a way

that no team gets too many wins.
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Certificate of Elimination

Let T ⊆ S be a subset of teams. Define

w(T) :=
∑
i∈T

wi, r (T) :=
∑

i,j∈T ,i<j
rij

If w(T)+r(T)|T | > M then one of the teams in T will have more than

M wins in the end. A team that can win at most M games is

therefore eliminated.

wins of
teams in T

remaining games
among teams in T
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Theorem 1

A team z is eliminated if and only if the flow network for z does

not allow a flow of value
∑
ij∈S\{z},i<j rij.

Proof (⇐)

ñ Consider the mincut A in the flow network. Let T be the set

of team-nodes in A.

ñ If for a node x-y not both team-nodes x and y are in T ,

then x-y ∉ A as otw. the cut would cut an infinite capacity

edge.

ñ We don’t find a flow that saturates all source edges:

r(S \ {z}) > cap(A,V \A)
≥

∑
i<j: i∉T∨j∉T

rij +
∑
i∈T
(M −wi)

≥ r(S \ {z})− r(T)+ |T |M −w(T)

ñ This gives M < (w(T)+ r(T))/|T |, i.e., z is eliminated.



Baseball Elimination

Proof (⇒)

ñ Suppose we have a flow that saturates all source edges.

ñ We can assume that this flow is integral.

ñ For every pairing x-y it defines how many games team x
and team y should win.

ñ The flow leaving the team-node x can be interpreted as the

additional number of wins that team x will obtain.

ñ This is less than M −wx because of capacity constraints.

ñ Hence, we found a set of results for the remaining games,

such that no team obtains more than M wins in total.

ñ Hence, team z is not eliminated.
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Project Selection

Project selection problem:

ñ Set P of possible projects. Project v has an associated profit

pv (can be positive or negative).

ñ Some projects have requirements (taking course EA2

requires course EA1).

ñ Dependencies are modelled in a graph. Edge (u,v) means

“can’t do project u without also doing project v.”

ñ A subset A of projects is feasible if the prerequisites of

every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.
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Project Selection

The prerequisite graph:

ñ {x,a, z} is a feasible subset.

ñ {x,a} is infeasible.
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Project Selection
Mincut formulation:

ñ Edges in the prerequisite graph get infinite capacity.

ñ Add edge (s, v) with capacity pv for nodes v with positive

profit.

ñ Create edge (v, t) with capacity −pv for nodes v with

negative profit.
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Theorem 2

A is a mincut if A \ {s} is the optimal set of projects.

Proof.

ñ A is feasible because of capacity infinity edges.
ñ cap(A,V \A) =

∑
v∈Ā:pv>0

pv +
∑

v∈A:pv<0

(−pv)

=
∑

v :pv>0

pv −
∑
v∈A

pv

prerequisite graph
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∑
v∈Ā:pv>0

pv
∑

v∈Ā:pv>0

pv

For the formula we
define ps := 0.

The step follows by
adding

∑
v∈A:pv>0 pv−∑

v∈A:pv>0 pv = 0.

Note that minimizing
the capacity of the cut
(A,V \A) corresponds
to maximizing profits
of projects in A.
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