Tt

EADS
© Ernst Mayr, Harald Réacke

Part V

Matchings

545

Matching
> Input: undirected graph G = (V,E).
» M < E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality

Bipartite Matching

> Input: undirected, bipartite graph G = (L w R, E).

» M < E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality

m EADS 16 Definition
© Ernst Mayr, Harald Réacke

547

Bipartite Matching

> Input: undirected, bipartite graph G = (L w R, E).

» M < E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality

m EADS 16 Definition
© Ernst Mayr, Harald Réacke

548

Bipartite Matching

» A matching M is perfect if it is of cardinality |[M| = |V|/2.

» For a bipartite graph G = (L w R, E) this means
IM| = |L| = |R| =n.

m EADS 16 Definition
© Ernst Mayr, Harald Réacke

549

17 Bipartite Matching via Flows
> Input: undirected, bipartite graph G = (Lw R w {s,t},E’).

» Direct all edges from L to R.
» Add source s and connect it to all nodes on the left.
» Add t and connect all nodes on the right to t.

» All edges have unit capacity.

Proof

Max cardinality matching in G < value of maxflow in G’

» Given a maximum matching M of cardinality k.

» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

m EADS 17 Bipartite Matching via Flows
© Ernst Mayr, Harald Réacke

551

Proof

Max cardinality matching in G > value of maxflow in G’
» Let f be a maxflow in G’ of value k
» Integrality theorem = k integral; we can assume f is 0/1.
» Consider M= set of edges from L to R with f(e) = 1.

» Each node in L and R participates in at most one edge in M.

» |M| = k, as the flow must use at least k middle edges.

m EADS 17 Bipartite Matching via Flows
© Ernst Mayr, Harald Réacke

552

17 Bipartite Matching via Flows

Which flow algorithm to use?
» Generic augmenting path: @(mval(f*)) = O(mn).

» Capacity scaling: ©(m?logC) = O(m?).

m EADS 17 Bipartite Matching via Flows
© Ernst Mayr, Harald Réacke 553

18 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Racke

554

Augmenting Paths in Action

0, /@ ©)
5
9

XX

X

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Réacke

555

Augmenting Paths in Action

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Réacke

555

18 Augmenting Paths for Matchings

Proof.
= If M is maximum there is no augmenting path P, because
we could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.
< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ @ M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |[M’| > |M]| there is one connected component that is a
path P for which both endpoints are incident to edges from
M’'. P is an alternating path.

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Racke

18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M' = M @ P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

: The above theorem allows for an easier implementation of an augment-
1 ing path algorithm. Once we checked for augmenting paths starting
| from u we don’t have to check for such paths in future rounds.

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Racke

557

18 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

> Pj o P is augmenting path in M (4).

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

/C O

even nodes
odd nodes

Case 1:
y is free vertex not
contained in T

o4
AN

vd
N

PEON
QO

you found
alternating path

& O O O O

o
o
/\
O 0O 3 O 0 O

O

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Réacke

How to find an augmenting path?

Construct an alternating tree.

/C O

even nodes
odd nodes

Case 2:
vy is matched vertex
not in T; then

O
O
O
O mate[y] ¢ T
O
O

o4
AN

vd
N

PEON
QO

grow the tree

o
e,
.
.
.
.

o
o
/\
O 0O 3 O 0 O

©o—0

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Réacke

How to find an augmenting path?

Construct an alternating tree.

e) O | even nodes
O |\
odd nodes
/ Case 3:
”) q O Q| Vis already contained
N \ in T as an odd vertex
5
...
SO Ol ;
D ignore successor y
....
....
O]

ol
e
/\
35

‘m EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Réacke

How to find an augmenting path?

Construct an alternating tree.

even nodes

/C

O

odd nodes

Case 4:
v is already contained

PEON
QO

in T as an even vertex

3 O 0O O

. \
ol
3
.
-
e
‘e
«

g
Q

can’t ignhore y

g
g
g
.

-
L]
,

@ O O O O

does not happen in
bipartite graphs

/\
35

O

© Ernst Mayr, Harald Réacke

18 Augmenting Paths for Matchings

562

Algorithm 52 BiMatch (G, match)

1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do

»

r—r+1
if mate[r] =0 then
fori =1 to m do parent[i'] — 0
Q < 0; Q.append(r); aug — false;
while aug = false and Q + 0 do
x — Q.dequeue();
for y € A do
if mate[y] =0 then
augm(mate, parent, y);
aug - true;
free — free —1;
else
if parent[y] =0 then
parent[y] < x;
Q.enqueue(mate[y]);

graph G = (SU S',E)
S={1,...,n}
S ={1,...,n'}

| The lecture version of the slides
I contains a step-by-step explana-
[-

| tion of the algorithm.

19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
> Input: undirected, bipartite graph G = L UR,E.
» an edge e = (£,7) has weight w, = 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that [L| = |R| =n

» assume that there is an edge between every pair of nodes
@, r)evxvVv

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

564

Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, [T(S)| = |S|, whereT'(S) denotes the set
of nodes in R that have a neighbour in S.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke 565

19 Weighted Bipartite Matching

Halls Theorem

Proof:

Tt

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

> Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.

» The size of the cutis |L| — |Lg| + |Rg].

» Using the fact that |T'(Ls)| > Ls gives that this is at least |L|.

EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke

567

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy, =0

denote the weight of node v.

» Suppose that the node weights dominate the edge-weights
in the following sense:

Xy + Xy = W, for every edge e = (u,v).

» Let H(X) denote the subgraph of G that only contains
edges that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy, + xy.

» Try to compute a perfect matching in the subgraph H(x). If
you are successful you found an optimal matching.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke 568

Algorithm Outline

Reason:

» The weight of your matching M* is

D, Wauw = D, (utx) =2 Xy,

(u,v)eM* (u,v)eM* v

» Any other matching M has

D> Wy = D (Xu+xy) <D Xy

(w,v)eM (u,v)eM v

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

569

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is aset S < L,
with [T'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
> the total weight assigned to nodes decreases
» the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke

570

Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the

node-weights in S by —9.

» Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight.

» Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence
would go between S and I'(S))
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.

+0

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

[(S)

571

Weighted Bipartite Matching

Edges not drawn have weight 0.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

572

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of
S by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because
all its edges either go between I'(S) and S or between L — S
and R —T(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

573

Analysis

» We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke 574

How to find an augmenting path?

Construct an alternating tree.

PEON
QO

/C

()
-/

o4
AN

vd
N

/\
O 0O 3 0O O O
O O O O O O

Tt

EADS
© Ernst Mayr, Harald Réacke

19 Weighted Bipartite Matching

575

Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in
the tight subgraph (because for a perfect matching we need
to find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, [Voddl = IT (Veven)| < [Vevenl, and all odd vertices are
saturated in the current matching.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

576

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly be deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time ©(n?)
(keeping track of the tight edges).

» An augmentation takes at most O(n) time.
» In total we otain a running time of O (n?%).

» A more careful implementation of the algorithm obtains a
running time of ©(n3).

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke

A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

M <0

repeat
let 7 = {P1,..., Py} be maximal set of
vertex-disjoint, shortest augmenting path w.r.t. M.
M~M& (PruU---UPy)

until 7 =0

return M

SO R

We call one iteration of the repeat-loop a phase of the algorithm.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Réacke

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

| 2

Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.
The connected components of G are cycles and paths.

The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke 579

Analysis

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

»Me<MeoPLU---UP,)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.

Lemma 5
ThesetA“Mae (M @®P)=(PLU---UPy) @®P contains at least

(k + 1)¥ edges.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke 580

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M'| = |[M| + k + 1.

» Each of these paths is of length at least £.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Réacke 581

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

>

If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,..., Py}.

Otherwise, at least one edge from P coincides with an edge
from paths {P;,..., Py}.

This edge is not contained in A.

Hence, |A| < k€ + |P| - 1.

The lower bound on |A| gives (k +1)¢ < |A| < k€ + |P| -1,
and hence |P| > ¥ + 1.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

582

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most
V]

IM| + I+1°

Proof.

The symmetric difference between M and M* contains

IM*| — |[M| vertex-disjoint augmenting paths. Each of these

paths contains at least £ + 1 vertices. Hence, there can be at

1vI
most - of them.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

> After iteration |+/|V]] the length of a shortest augmenting
path must be at least |[/|V]] +1 = /|V].

» Hence, there can be at most |V |/(y/|V|+ 1) < +/|V]|
additional augmentations.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

584

Analysis

Lemma 8
One phase of the Hopcroft-Karp algorithm can be implemented
in time O (m).

» Do a breadth first search starting at all free vertices in the
left side L.

(alternatively add a super-startnode; connect it to all free vertices
in L and start breadth first search from there)

» The search stops when reaching a free vertex. However, the
current level of the BFS tree is still finished in order to find a
set F of free vertices (on the right side) that can be reached
via shortest augmenting paths.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

585

Analysis

>

Then a maximal set of shortest path from the leftmost layer
of the tree construction to nodes in F needs to be
computed.

Any such path must visit the layers of the BFS-tree from left
to right.

To go from an odd layer to an even layer it must use a
matching edge.

To go from an even layer to an odd layer edge it can use
edges in the BFS-tree or edges that have been ignored
during BFS-tree construction.

We direct all edges btw. an even node in some layer £ to an
odd node in layer £ + 1 from left to right.

A DFS search in the resulting graph gives us a maximal set
of vertex disjoint path from left to right in the resulting
graph.

‘m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Réacke

586

How to find an augmenting path?

Construct an alternating tree.

O

/C

()
/

~1
“A

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

can’t ignore y

Tt

EADS
© Ernst Mayr, Harald Réacke

Thecycle w -« y —x - w
is called a blossom.

w is called the base of the
blossom (even nodel!l!).
The path u-w path is called
the stem of the blossom.

21 Maximum Matching in General Graphs

588

Flowers and Blossoms

Definition 9
A flower in a graph G = (V,E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

» A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base
of the blossom.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

589

Flowers and Blossoms

(A ()
—O—C—=G
() ()
—0—0—C

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Réacke

590

Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges
for some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at r).

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

591

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

592

Flowers and Blossoms

(6

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Réacke

®

®

593

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

» Delete all vertices in B (and its incident edges) from G.

» Add a new (pseudo-)vertex b. The new vertex b is
connected to all vertices in V \ B that had at least one edge
to a vertex from B.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

594

Shrinking Blossoms

Tt

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become
matching edges in M’.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Réacke

595

Shrinking Blossoms

Tt

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become
matching edges in M’.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Réacke

595

Example: Blossom Algorithm

Animation of Blossom Shrinking
algorithm is only available in the
lecture version of the slides.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

596

Correctness

Assume that in G we have a flower w.r.t. matching M. Let » be
the root, B the blossom, and w the base. Let graph G’ = G/B
with pseudonode b. Let M’ be the matching in the contracted
graph.

Lemma 10

If G' contains an augmenting path P’ starting at v (or the
pseudo-node containing v) w.r.t. the matching M’ then G
contains an augmenting path starting at v w.r.t. matching M.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke 597

Correctness

Proof.
If P" does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.

@ o 0 9 @

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

598

Correctness

» After the expansion £ must be incident to some node in the
blossom. Let this node be k.

» If k # w there is an alternating path P> from w to k that
ends in a matching edge.

» P1o(i,w) o Pyo (k,¥) o P3is an alternating path.

» If k = w then P; o (i,w) o (w,¥) o P3 is an alternating path.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Réacke

599

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w="r.

» The path 7 o P> o (k,¥) o P3 is an alternating path.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke 600

Correctness

Lemma 11

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing v) to q w.r.t. M.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

601

Correctness

Proof.

> If P does not contain a node from B there is nothing to
prove.

» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P o (i, j) o P>, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke 602

Correctness

lllustration for Case 1:

() M) ()
N\ N\ N\
N\ N\

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

603

Correctness

Case 2: non-empty stem

Let P3 be alternating path from # to w; this exists because ¥ and
w are root and base of a blossom. Define M, = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and q as these are the only
unmatched vertices w.r.t. M.

For M. the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M/, . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between v and g.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Algorithm 54 search(r, found)

1:

NI H BN

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to and initialize list — {r}
while list = 0 do
delete a node i from list
examine(i, found)
if found = true then return

Search for an augmenting path
starting at .

[T
 The lecture version

1
' of the slides has a ,
1 step by step expla- :
: nation. 1

Algorithm 55 examine(i, found)
1: forall j € A(i) do

2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i

6: found — true;
7

8

9

0

1

return

if j is matched and unlabeled then
pred(j) < i
pred(mate(j)) < j;

10:
11: add mate(j) to list

Examine the neighbours of a node i | The lecture version
' of the slides has a ,
: step by step expla- :
| hation. 1

Algorithm 56 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O U1 W N =

Contract blossom identified by
nodes i and j

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Algorithm 56 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O U1 W N~

Get all nodes of the blossom.

Time: O(m)

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Algorithm 56 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

A U1 DN W N =

Identify all neighbours of b.

Time: O(m) (how?)

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Algorithm 56 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v -~ BN =

b will be an even node, and it has
unexamined neighbours.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Algorithm 56 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o vl AW N =

Every node that was adjacent to a node
in B is now adjacent to b

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Algorithm 56 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O vl W N =

Only for making a blossom
expansion easier.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Tt

Algorithm 56 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

S U1 W N =

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

607

Analysis

» A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

» The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

» There are at most n contractions as each contraction
reduces the number of vertices.

» The expansion can trivially be done in the same time as
needed for all contractions.

» An augmentation requires time @(n). There are at most n
of them.

» In total the running time is at most

n-(Omn) +On)) = O(mn?) .

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

608

Example: Blossom Algorithm

Animation of Blossom Shrinking
algorithm is only available in the
lecture version of the slides.

‘m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Réacke

609

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	The Hopcroft-Karp Algorithm
	Maximum Matching in General Graphs

