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Part I

Organizational Matters

EADS

© Ernst Mayr, Harald Räcke 2

Part I

Organizational Matters

ñ Modul: IN2003

ñ Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Mon 10:15–11:45 (Room Interim2)
Fri 10:15–11:45 (Room Interim2)

ñ Webpage: http://www14.in.tum.de/lehre/2013WS/ea/

ñ Required knowledge:
ñ IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

ñ IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

ñ IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

ñ IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

ñ IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)
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The Lecturer

ñ Harald Räcke

ñ Email: raecke@in.tum.de

ñ Room: 03.09.044

ñ Office hours: (per appointment)
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Tutorials

ñ Tutors:
ñ Chintan Shah
ñ chintan.shah@tum.de
ñ Room: 03.09.059
ñ Office hours: Wed 11:30–12:30

ñ Richard Stotz
ñ richardstotz@gmail.com
ñ Room: —
ñ Office hours: —
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Tutorials

ñ Monday 16-18 (MI 00.08.038)

Chintan

ñ Tuesday 14-16 (MI 00.08.038)

Richard

ñ Thursday 10-12 (MI 00.08.038)

Richard

ñ Friday 12-14 (MI 00.13.009A)

Chintan
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Assignment sheets

In order to pass the module you need to pass a 3 hour exam.
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Assessment

Assignment Sheets:

ñ An assignment sheet is usually made available on Monday

on the module webpage.

ñ Solutions have to be handed in in the following week before

the lecture on Monday.

ñ You can hand in your solutions by putting them in the right

folder in front of room 03.09.052.

ñ Solutions have to be given in English.

ñ Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

ñ You can submit solutions in groups of up to 3 people.
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Assessment

Assignment can be used to improve you grade

ñ If you obtain 50% of the points on the first half and 50% on

the second half of assignments your grade will improve

according to the following function

f(x) =



1
10round

(
10
(

round(3x)−1
3

))
1 < x < 4

x otw.

ñ It will improve by 0.3 or 0.4, respectively.
Examples:

ñ 3.3 → 3.0
ñ 2.0 → 1.7
ñ 3.7 → 3.3
ñ 1.0 → 1.0
ñ > 4.0 no improvement
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1 Contents

ñ Foundations
ñ Machine models
ñ Efficiency measures
ñ Asymptotic notation
ñ Recursion

ñ Higher Data Structures
ñ Search trees
ñ Hashing
ñ Priority queues
ñ Union/Find data structures

ñ Cuts/Flows

ñ Matchings
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2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:

The design and analysis of computer algorithms,

Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,

Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia:

Algorithm design: Foundations, analysis, and internet

examples,

John Wiley & Sons, 2002
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2 Literatur

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und

die Analyse effizienter Algorithmen,

2. Auflage, Vieweg, 2003

Jon Kleinberg, Eva Tardos:

Algorithm Design,

Addison-Wesley, 2005

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental

Algorithms,

3. Auflage, Addison-Wesley Publishing Company: Reading

(MA), 1997
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2 Literatur

Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and

Searching,

3. Auflage, Addison-Wesley Publishing Company: Reading

(MA), 1997

Christos H. Papadimitriou, Kenneth Steiglitz:

Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, 1982

Uwe Schöning:

Algorithmik,

Spektrum Akademischer Verlag, 2001

Steven S. Skiena:

The Algorithm Design Manual,

Springer, 1998
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Part II

Foundations

EADS
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Vocabularies

a · b “a times b”

“a multiplied by b”

“a into b”
a
b “a divided by b”

“a by b”

“a over b”

(a: numerator (Zähler), b: denominator (Nenner))

ab “a raised to the b-th power”

“a to the b-th”

“a raised to the power of b”

“a to the power of b”

“a raised to b”

“a to the b”

“a raised by the exponent of b”
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Vocabularies

n! “n factorial”
(
n
k

)
“n choose k”

xi “x subscript i”
“x sub i”
“x i”

logb a “log to the base b of a”

“log a to the base b”

f : X → Y ,x , x2

f is a function that maps from domain (Definitionsbereich) X to

codomain (Zielmenge) Y . The set {y ∈ Y | ∃x ∈ X : f(x) = y}
is the image or the range of the function

(Bildbereich/Wertebereich).
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3 Goals

ñ Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

ñ Learn how to analyze and judge the efficiency of algorithms.

ñ Learn how to design efficient algorithms.

EADS 3 Goals
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4 Modelling Issues

What do you measure?

ñ Memory requirement

ñ Running time

ñ Number of comparisons

ñ Number of multiplications

ñ Number of hard-disc accesses

ñ Program size

ñ Power consumption

ñ . . .

EADS 4 Modelling Issues
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4 Modelling Issues

How do you measure?

ñ Implementing and testing on representative inputs
ñ How do you choose your inputs?
ñ May be very time-consuming.
ñ Very reliable results if done correctly.
ñ Results only hold for a specific machine and for a specific

set of inputs.

ñ Theoretical analysis in a specific model of computation.
ñ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
ñ Typically focuses on the worst case.
ñ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the
worst case”.

EADS 4 Modelling Issues
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

ñ the size of the input (number of bits)

ñ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.
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Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

EADS 4 Modelling Issues
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Turing Machine

ñ Very simple model of computation.

ñ Only the “current” memory location can be altered.

ñ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

ñ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

. . . . . .
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Random Access Machine (RAM)

ñ Input tape and output tape (sequences of zeros and ones;

unbounded length).

ñ Memory unit: infinite but countable number of registers

R[0], R[1], R[2], . . . .
ñ Registers hold integers.

ñ Indirect addressing.

Note that in the picture on the right
the tapes are one-directional, and that
a READ- or WRITE-operation always ad-
vances its tape.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

. . . . . .

. . . . . .
.
.
.
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Random Access Machine (RAM)

Operations

ñ input operations (input tape → R[i])
ñ READ i

ñ output operations (R[i]→ output tape)
ñ WRITE i

ñ register-register transfers
ñ R[j] := R[i]
ñ R[j] := 4

ñ indirect addressing
ñ R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

ñ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

EADS 4 Modelling Issues
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Random Access Machine (RAM)

Operations

ñ branching (including loops) based on comparisons
ñ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

ñ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

ñ jumpi i
jump to R[i] (indirect jump);

ñ arithmetic instructions: +, −, ×, /
ñ R[i] := R[j] + R[k];
R[i] := -R[k]; The jump-directives are very close to the

jump-instructions contained in the as-
sembler language of real machines.
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Model of Computation

ñ uniform cost model

Every operation takes time 1.

ñ logarithmic cost model
The cost depends on the content of memory cells:

ñ The time for a step is equal to the largest operand involved;
ñ The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed w, where usually

w = log2n.
The latter model is quite realistic as the word-size of
a standard computer that handles a problem of size n
must be at least log2 n as otherwise the computer could
either not store the problem instance or not address all
its memory.

EADS 4 Modelling Issues
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

ñ running time:
ñ uniform model: n steps
ñ logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

ñ space requirement:
ñ uniform model: O(1)
ñ logarithmic model: O(2n)

EADS 4 Modelling Issues
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C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

There are different types of complexity bounds:

ñ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

ñ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.

ñ average case complexity:

Cavg(n) := 1
|In|

∑

|x|=n
C(x)

more general: probability measure µ

Cavg(n) :=
∑

x∈In
µ(x) · C(x)
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There are different types of complexity bounds:

ñ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

ñ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input

x. Then take the worst-case over all x with |x| = n.

EADS 4 Modelling Issues
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4 Modelling Issues

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.
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5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

EADS 5 Asymptotic Notation
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Asymptotic Notation

Formal Definition

Let f denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

EADS 5 Asymptotic Notation
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.
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Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

3. This is particularly useful if you do not
want to ignore constant factors. For ex-
ample the median of n elements can
be determined using 3

2n+o(n) compar-
isons.

2. In this context f(n) does not mean the
function f evaluated at n, but instead
it is a shorthand for the function itself
(leaving out domain and codomain and
only giving the rule of correspondence
of the function).
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Asymptotic Notation

Abuse of notation

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

EADS 5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

EADS 5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

EADS 5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:

n∑

i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.
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Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as

generating a set:

n2 · O(n)+O(logn)

represents

{
f : N→ R+ | f(n) = n2 · g(n)+ h(n)

with g(n) ∈ O(n) and h(n) ∈ O(logn)
}

Recall that according to the previous
slide e.g. the expressions

∑n
i=1O(i) and∑n/2

i=1 O(i)+
∑n
i=n/2+1O(i) generate dif-

ferent sets.

EADS 5 Asymptotic Notation
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Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as

containement btw. two sets:

n2 · O(n)+O(logn) = Θ(n2)

represents

n2 · O(n)+O(logn) ⊆ Θ(n2)

Note that the equation does not hold.
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Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).
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Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.
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Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:
ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.
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5 Asymptotic Notation

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.
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6 Recurrences

Algorithm 2 mergesort(listL)
1: n← size(L)
2: if n ≤ 1 return L
3: L1 ← L[1 · · · bn2 c]
4: L2 ← L[bn2 c + 1 · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L←merge(L1, L2)
8: return L

This algorithm requires

T(n) = T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+O(n) ≤ 2T

(⌈n
2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.
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Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.
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Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.

EADS 6 Recurrences
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Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types

of linear inhomogenous relations and also sometimes

non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations

so that it e.g. becomes linear and can therefore be solved

with one of the other techniques.
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6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
{

2T
(⌈n

2

⌉)+ cn n ≥ 2

0 otherwise

Assume that instead we had

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.
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6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

if we choose d ≥ c.

Formally one would make an induction proof, where the above is

the induction step. The base case is usually trivial.
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6.1 Guessing+Induction

• Note that this proves the
statement for n ∈ N≥2, as the
statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

ñ base case (2 ≤ n < 16): true if we choose d ≥ b.

ñ induction step 2 . . . n− 1→ n:

Suppose statem. is true for n′ ∈ {2, . . . , n− 1}, and n ≥ 16.

We prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

Hence, statement is true if we choose d ≥ c.



6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following

recurrence:

T(n) ≤
{

2T(
⌈n

2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).
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6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn

≤ dn log
( 9

16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
≤ dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4
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6.2 Master Theorem

Lemma 4

Let a ≥ 1, b ≥ 1 and ε > 0 denote constants. Consider the

recurrence

T(n) = aT
(n
b

)
+ f(n) .

Case 1.

If f(n) = O(nlogb(a)−ε) then T(n) = Θ(nlogb a).

Case 2.

If f(n) = Θ(nlogb(a) logkn) then T(n) = Θ(nlogb a logk+1n),
k ≥ 0.

Case 3.

If f(n) = Ω(nlogb(a)+ε) and for sufficiently large n
af(nb ) ≤ cf(n) for some constant c < 1 then T(n) = Θ(f (n)).

Note that the cases do not cover all pos-
sibilities.
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6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

b`, and we assume that the non-recursive case occurs for

problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a

recursion tree:

x f(n)

af(nb )

a2f( nb2 )

alogb n

nlogb a

=

n

n
b

n
b

n
b

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

11111111 1 1 1 1 1 1 1

a

aaa

a a a a a a a a a
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6.2 Master Theorem

This gives

T(n) = nlogb a +
logb n−1∑

i=0

aif
(
n
bi

)
.
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Case 1. Now suppose that f(n) ≤ cnlogb a−ε.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤ c
logb n−1∑

i=0

ai
(
n
bi

)logb a−ε

= cnlogb a−ε
logb n−1∑

i=0

(
bε
)i

= cnlogb a−ε(bε logb n − 1)/(bε − 1)

= cnlogb a−ε(nε − 1)/(bε − 1)

= c
bε − 1

nlogb a(nε − 1)/(nε)

Hence,

T(n) ≤
(

c
bε − 1

+ 1
)
nlogb(a)

∑k
i=0 qi = qk+1−1

q−1

b−i(logb a−ε) = bεi(blogb a)−i = bεia−i

⇒ T(n) = O(nlogb a).
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Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤ c
logb n−1∑

i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑

i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n) ⇒ T(n) = O(nlogb a logn).
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Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≥ c
logb n−1∑

i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑

i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n) ⇒ T(n) = Ω(nlogb a logn).
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Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤ c
logb n−1∑

i=0

ai
(
n
bi

)logb a
·
(

logb

(
n
bi

))k

= cnlogb a
`−1∑

i=0

(
logb

(
b`

bi

))k

= cnlogb a
`−1∑

i=0

(` − i)k

= cnlogb a
∑̀

i=1

ik

≈ c
k
nlogb a`k+1

n = b` ⇒ ` = logb n

∑̀

i=1

ik ≈ 1
k`
k+1

⇒ T(n) = O(nlogb a logk+1n).
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Case 3. Now suppose that f(n) ≥ dnlogb a+ε, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif(n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤
logb n−1∑

i=0

cif(n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
∑n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

⇒ T(n) = Θ(f (n)).

Where did we use f(n) ≥ Ω(nlogb a+ε)?
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

• This is also nown as the “school
method” for multiplying integers.

• Note that the intermediate num-
bers that are generated can have
at most m+n ≤ 2n bits.

Time requirement:

ñ Computing intermediate results: O(nm).
ñ Adding m numbers of length ≤ 2n:

O((m+n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

AB × . . .. . . . . . . . .. . . . . . a0anb0bn an
2−1an

2
bn

2−1bn
2

B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0 · B0
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z1 ←mult(A1, B0)+mult(A0, B1)
7: Z0 ←mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
2T(n2 )+O(n)
T(n2 )
O(n)

We get the following recurrence:

T(n) = 4T
(n

2

)
+O(n) .
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
ñ Case 1: f(n) = O(nlogb a−ε) T(n) = Θ(nlogb a)
ñ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
ñ Case 3: f(n) = Ω(nlogb a+ε) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−ε) = O(nlogb a−ε).

We get a running time of O(n2) for our algorithm.

⇒ Not better then the “school method”.
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0

= Z2︷ ︸︸ ︷
A1B1

= Z0︷ ︸︸ ︷
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z0 ←mult(A0, B0)
7: Z1 ←mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
T(n2 )
T(n2 )+O(n)
O(n)

A more precise
(correct) analysis
would say that
computing Z1

needs time
T(n2 + 1)+O(n).
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
(n

2

)
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
ñ Case 1: f(n) = O(nlogb a−ε) T(n) = Θ(nlogb a)
ñ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
ñ Case 3: f(n) = Ω(nlogb a+ε) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (c0, ck ≠ 0).

ñ T(n) only depends on the k preceding values. This means

the recurrence relation is of order k.

ñ The recurrence is linear as there are no products of T[n]’s.

ñ If f(n) = 0 then the recurrence relation becomes a linear,

homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:

ñ The solution T[1], T[2], T[3], . . . is completely determined

by a set of boundary conditions that specify values for

T[1], . . . , T [k].
ñ In fact, any k consecutive values completely determine the

solution.

ñ k non-concecutive values might not be an appropriate set of

boundary conditions (depends on the problem).

Approach:

ñ First determine all solutions that satisfy recurrence relation.

ñ Then pick the right one by analyzing boundary conditions.

ñ First consider the homogenous case.
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The Homogenous Case

The solution space

S =
{
T = T[1], T[2], T[3], . . . ∣∣ T fulfills recurrence relation

}

is a vector space. This means that if T1,T2 ∈ S, then also

αT1 + βT2 ∈ S, for arbitrary constants α,β.

How do we find a non-trivial solution?

We guess that the solution is of the form λn, λ ≠ 0, and see what

happens. In order for this guess to fulfill the recurrence we need

c0λn + c1λn−1 + c2 · λn−2 + · · · + ck · λn−k = 0

for all n ≥ k.
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The Homogenous Case

Dividing by λn−k gives that all these constraints are identical to

c0λk + c1λk−1 + c2 · λk−2 + · · · + ck = 0c0λk + c1λk−1 + c2 · λk−2 + · · · + ck︸ ︷︷ ︸
characteristic polynomial P[λ]

This means that if λi is a root (Nullstelle) of P[λ] then T[n] = λni
is a solution to the recurrence relation.

Let λ1, . . . , λk be the k (complex) roots of P[λ]. Then, because of

the vector space property

α1λn1 +α2λn2 + · · · +αkλnk

is a solution for arbitrary values αi.
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The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots

λ1, . . . , λk. Then all solutions to the recurrence relation are of

the form

α1λn1 +α2λn2 + · · · +αkλnk .

Proof.

There is one solution for every possible choice of boundary

conditions for T[1], . . . , T [k].

We show that the above set of solutions contains one solution

for every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

α1 · λ1 + α2 · λ2 + · · · + αk · λk = T[1]
α1 · λ2

1 + α2 · λ2
2 + · · · + αk · λ2

k = T[2]
...

α1 · λk1 + α2 · λk2 + · · · + αk · λkk = T[k]
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:




λ1 λ2 · · · λk
λ2

1 λ2
2 · · · λ2

k
...

λk1 λk2 · · · λkk







α1

α2
...

αk



=




T[1]
T[2]

...

T[k]




We show that the column vectors are linearly independent. Then

the above equation has a solution.
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∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
λ1 λ2 · · · λk−1 λk
...

...
...

...
λk−1

1 λk−1
2 · · · λk−1

k−1 λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

=

k∏

i=2

(λi − λ1) ·

∣∣∣∣∣∣∣∣∣

1 λ2 · · · λk−3
2 λk−2

2
...

...
...

...
1 λk · · · λk−3

k λk−2
k

∣∣∣∣∣∣∣∣∣
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Computing the Determinant

Repeating the above steps gives:

∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

λi ·
∏

i>`

(λi − λ`)

Hence, if all λi’s are different, then the determinant is non-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λi with multiplicity (Vielfachheit) at least

2. Then not only is λni a solution to the recurrence but also nλni .

To see this consider the polynomial

P[λ] · λn−k = c0λn + c1λn−1 + c2λn−2 + · · · + ckλn−k

Since λi is a root we can write this as Q[λ] · (λ− λi)2.

Calculating the derivative gives a polynomial that still has root

λi.
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This means

c0nλn−1
i + c1(n− 1)λn−2

i + · · · + ck(n− k)λn−k−1
i = 0

Hence,

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0︸ ︷︷ ︸

T[n]
︸ ︷︷ ︸

T[n−1]
︸ ︷︷ ︸

T[n−k]
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The Homogeneous Case

Suppose λi has multiplicity j. We know that

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0

(after taking the derivative; multiplying with λ; plugging in λi)

Doing this again gives

c0n2λni + c1(n− 1)2λn−1
i + · · · + ck(n− k)2λn−ki = 0

We can continue j − 1 times.

Hence, n`λni is a solution for ` ∈ 0, . . . , j − 1.
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The Homogeneous Case

Lemma 6

Let P[λ] denote the characteristic polynomial to the recurrence

c0T[n]+ c1T[n− 1]+ · · · + ckT[n− k] = 0

Let λi, i = 1, . . . ,m be the (complex) roots of P[λ] with

multiplicities `i. Then the general solution to the recurrence is

given by

T[n] =
m∑

i=1

`i−1∑

j=0

αij · (njλni ) .

The full proof is omitted. We have only shown that any choice of

αij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0] = 0

T[1] = 1

T[n] = T[n− 1]+ T[n− 2] for n ≥ 2

The characteristic polynomial is

λ2 − λ− 1

Finding the roots, gives

λ1/2 = 1
2
±
√

1
4
+ 1 = 1

2

(
1±

√
5
)
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Example: Fibonacci Sequence

Hence, the solution is of the form

α
(

1+√5
2

)n
+ β

(
1−√5

2

)n

T[0] = 0 gives α+ β = 0.

T[1] = 1 gives

α
(

1+√5
2

)
+ β

(
1−√5

2

)
= 1 =⇒ α− β = 2√

5
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Example: Fibonacci Sequence

Hence, the solution is

1√
5

[(
1+√5

2

)n
−
(

1−√5
2

)n]
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The Inhomogeneous Case

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

with f(n) ≠ 0.

While we have a fairly general technique for solving

homogeneous, linear recurrence relations the inhomogeneous

case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is

T(n) = Th(n)+ Tp(n) ,

where Th is any solution to the homogeneous equation, and Tp
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:

T[n] = T[n− 1]+ 1 T[0] = 1

Then,

T[n− 1] = T[n− 2]+ 1 (n ≥ 2)

Subtracting the first from the second equation gives,

T[n]− T[n− 1] = T[n− 1]− T[n− 2] (n ≥ 2)

or

T[n] = 2T[n− 1]− T[n− 2] (n ≥ 2)

I get a completely determined recurrence if I add T[0] = 1 and

T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

λ2 − 2λ+ 1 = 0λ2 − 2λ+ 1︸ ︷︷ ︸
(λ−1)2

Then the solution is of the form

T[n] = α1n + βn1n = α+ βn

T[0] = 1 gives α = 1.

T[1] = 2 gives 1+ β = 2 =⇒ β = 1.
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The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

T[n] = T[n− 1]+n2

Shift:

T[n− 1] = T[n− 2]+ (n− 1)2 = T[n− 2]+n2 − 2n+ 1

Difference:

T[n]− T[n− 1] = T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1
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T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

Shift:

T[n− 1] = 2T[n− 2]− T[n− 3]+ 2(n− 1)− 1

= 2T[n− 2]− T[n− 3]+ 2n− 3

Difference:

T[n]− T[n− 1] =2T[n− 1]− T[n− 2]+ 2n− 1

− 2T[n− 2]+ T[n− 3]− 2n+ 3

T[n] = 3T[n− 1]− 3T[n− 2]+ T[n− 3]+ 2

and so on...
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6.4 Generating Functions

Definition 7 (Generating Function)

Let (an)n≥0 be a sequence. The corresponding

ñ generating function (Erzeugendenfunktion) is

F(z) :=
∑

n≥0

anzn;

ñ exponential generating function (exponentielle

Erzeugendenfunktion) is

F(z) =
∑

n≥0

an
n!
zn.
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6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0, . . .) is

F(z) = 1 .

2. The generating function of the sequence (1,1,1, . . .) is

F(z) = 1
1− z .
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale

Potenzreihe).

Then the generating function is an algebraic object.

Let f =∑n≥0 anzn and g =∑n≥0 bnzn.

ñ Equality: f and g are equal if an = bn for all n.

ñ Addition: f + g :=∑n≥0(an + bn)zn.

ñ Multiplication: f · g :=∑n≥0 cnzn with c =∑np=0 apbn−p.

There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f : C→ C.

Then, it is important to think about convergence/convergence

radius etc.
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6.4 Generating Functions

What does
∑
n≥0 zn = 1

1−z mean in the algebraic view?

It means that the power series 1− z and the power series∑
n≥0 zn are invers, i.e.,

(
1− z

)
·
( ∞∑

n≥0

zn
)
= 1 .

This is well-defined.
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6.4 Generating Functions

Suppose we are given the generating

function

∑

n≥0

zn = 1
1− z .

We can compute the derivative:

∑

n≥1

nzn−1 = 1
(1− z)2

∑

n≥1

nzn−1

︸ ︷︷ ︸∑
n≥0(n+1)zn

Hence, the generating function of the sequence an = n+ 1

is 1/(1− z)2.

Formally the derivative of a formal
power series

∑
n≥0 anz

n is defined
as
∑
n≥0 nanzn−1.

The known rules for differentiation
work for this definition. In partic-
ular, e.g. the derivative of 1

1−z is
1

(1−z)2 .

Note that this requires a proof if we
consider power series as algebraic
objects. However, we did not prove
this in the lecture.
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6.4 Generating Functions

We can repeat this

∑

n≥0

(n+ 1)zn = 1
(1− z)2 .

Derivative: ∑

n≥1

n(n+ 1)zn−1 = 2
(1− z)3

∑

n≥1

n(n+ 1)zn−1

︸ ︷︷ ︸∑
n≥0(n+1)(n+2)zn

Hence, the generating function of the sequence

an = (n+ 1)(n+ 2) is 2
(1−z)3 .
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6.4 Generating Functions

Computing the k-th derivative of
∑
zn.

∑

n≥k
n(n− 1) · . . . · (n− k+ 1)zn−k =

∑

n≥0

(n+ k) · . . . · (n+ 1)zn

= k!
(1− z)k+1 .

Hence: ∑

n≥0

(
n+ k
k

)
zn = 1

(1− z)k+1 .

The generating function of the sequence an =
(
n+k
k

)
is 1
(1−z)k+1 .
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6.4 Generating Functions

∑

n≥0

nzn =
∑

n≥0

(n+ 1)zn −
∑

n≥0

zn

= 1
(1− z)2 −

1
1− z

= z
(1− z)2

The generating function of the sequence an = n is z
(1−z)2 .
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6.4 Generating Functions

We know

∑

n≥0

yn = 1
1−y

Hence,

∑

n≥0

anzn = 1
1− az

The generating function of the sequence fn = an is 1
1−az .
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Example: an = an−1 + 1, a0 = 1

Suppose we have the recurrence an = an−1 + 1 for n ≥ 1 and

a0 = 1.

A(z) =
∑

n≥0

anzn

= a0 +
∑

n≥1

(an−1 + 1)zn

= 1+ z
∑

n≥1

an−1zn−1 +
∑

n≥1

zn

= z
∑

n≥0

anzn +
∑

n≥0

zn

= zA(z)+
∑

n≥0

zn

= zA(z)+ 1
1− z
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Example: an = an−1 + 1, a0 = 1

Solving for A(z) gives

∑

n≥0

anzn = A(z) = 1
(1− z)2 =

∑

n≥0

(n+ 1)zn

Hence, an = n+ 1.
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Some Generating Functions

n-th sequence element generating function

1
1

1− z
n+ 1

1
(1− z)2

(
n+k
k

) 1
(1− z)k+1

n z
(1− z)2

an
1

1− az
n2

z(1+ z)
(1− z)3

1
n! ez
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Some Generating Functions

n-th sequence element generating function

cfn cF

fn + gn F +G
∑n
i=0 fign−i F ·G

fn−k (n ≥ k); 0 otw. zkF

∑n
i=0 fi

F(z)
1− z

nfn z
dF(z)

dz

cnfn F(cz)
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Solving Recursions with Generating Functions

1. Set A(z) =∑n≥0 anzn.

2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

ñ partial fraction decomposition (Partialbruchzerlegung)
ñ lookup in tables

6. The coefficients of the resulting power series are the an.
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Example: an = 2an−1, a0 = 1

1. Set up generating function:

A(z) =
∑

n≥0

anzn

2. Transform right hand side so that recurrence can be

plugged in:

A(z) = a0 +
∑

n≥1

anzn

2. Plug in:

A(z) = 1+
∑

n≥1

(2an−1)zn
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Example: an = 2an−1, a0 = 1

3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

A(z) = 1+
∑

n≥1

(2an−1)zn

= 1+ 2z
∑

n≥1

an−1zn−1

= 1+ 2z
∑

n≥0

anzn

= 1+ 2z ·A(z)

4. Solve for A(z).

A(z) = 1
1− 2z
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Example: an = 2an−1, a0 = 1

5. Rewrite f(z) as a power series:

∑

n≥0

anzn = A(z) = 1
1− 2z

=
∑

n≥0

2nzn
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Example: an = 3an−1 + n, a0 = 1

1. Set up generating function:

A(z) =
∑

n≥0

anzn
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Example: an = 3an−1 + n, a0 = 1

2./3. Transform right hand side:

A(z) =
∑

n≥0

anzn

= a0 +
∑

n≥1

anzn

= 1+
∑

n≥1

(3an−1 +n)zn

= 1+ 3z
∑

n≥1

an−1zn−1 +
∑

n≥1

nzn

= 1+ 3z
∑

n≥0

anzn +
∑

n≥0

nzn

= 1+ 3zA(z)+ z
(1− z)2
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Example: an = 3an−1 + n, a0 = 1

4. Solve for A(z):

A(z) = 1+ 3zA(z)+ z
(1− z)2

gives

A(z) = (1− z)2 + z
(1− 3z)(1− z)2 =

z2 − z + 1
(1− 3z)(1− z)2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2 − z + 1
(1− 3z)(1− z)2

!= A
1− 3z

+ B
1− z +

C
(1− z)2

This gives

z2 − z + 1 = A(1− z)2 + B(1− 3z)(1− z)+ C(1− 3z)

= A(1− 2z + z2)+ B(1− 4z + 3z2)+ C(1− 3z)

= (A+ 3B)z2 + (−2A− 4B − 3C)z + (A+ B + C)
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+ B + C = 1

2A+ 4B + 3C = 1

A+ 3B = 1

which gives

A = 7
4
B = −1

4
C = −1

2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

A(z) = 7
4
· 1

1− 3z
− 1

4
· 1

1− z −
1
2
· 1
(1− z)2

= 7
4
·
∑

n≥0

3nzn − 1
4
·
∑

n≥0

zn − 1
2
·
∑

n≥0

(n+ 1)zn

=
∑

n≥0

(7
4
· 3n − 1

4
− 1

2
(n+ 1)

)
zn

=
∑

n≥0

(7
4
· 3n − 1

2
n− 3

4

)
zn

6. This means an = 7
43n − 1

2n− 3
4 .
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6.5 Transformation of the Recurrence

Example 9
f0 = 1

f1 = 2

fn = fn−1 · fn−2 for n ≥ 2 .

Define

gn := logfn .

Then

gn = gn−1 + gn−2 for n ≥ 2

g1 = log 2 = 1(for log = log2), g0 = 0

gn = Fn (n-th Fibonacci number)

fn = 2Fn
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6.5 Transformation of the Recurrence

Example 10

f1 = 1

fn = 3fn
2
+n; for n = 2k, k ≥ 1 ;

Define

gk := f2k .

Then:

g0 = 1

gk = 3gk−1 + 2k, k ≥ 1
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6 Recurrences

We get

gk = 3
[
gk−1

]+ 2k

= 3
[
3gk−2 + 2k−1

]
+ 2k

= 32 [gk−2
]+ 32k−1 + 2k

= 32
[
3gk−3 + 2k−2

]
+ 32k−1 + 2k

= 33gk−3 + 322k−2 + 32k−1 + 2k

= 2k ·
k∑

i=0

(3
2

)i

= 2k · (
3
2)
k+1 − 1
1/2

= 3k+1 − 2k+1
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6 Recurrences

Let n = 2k:

gk = 3k+1 − 2k+1, hence

fn = 3 · 3k − 2 · 2k

= 3(2log 3)k − 2 · 2k

= 3(2k)log 3 − 2 · 2k

= 3nlog 3 − 2n .
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Part III

Data Structures

EADS
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Abstract Data Type

An abstract data type (ADT) is defined by an interface of

operations or methods that can be performed and that have a

defined behavior.

The data types in this lecture all operate on objects that are

represented by a [key, value] pair.

ñ The key comes from a totally ordered set, and we assume

that there is an efficient comparison function.

ñ The value can be anything; it usually carries satellite

information important for the application that uses the ADT.
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Dynamic Set Operations

ñ S. search(k): Returns pointer to object x from S with

key[x] = k or null.

ñ S. insert(x): Inserts object x into set S. key[x] must not

currently exist in the data-structure.

ñ S. delete(x): Given pointer to object x from S, delete x
from the set.

ñ S.minimum(): Return pointer to object with smallest

key-value in S.

ñ S.maximum(): Return pointer to object with largest

key-value in S.

ñ S. successor(x): Return pointer to the next larger element

in S or null if x is maximum.

ñ S. predecessor(x): Return pointer to the next smaller

element in S or null if x is minimum.
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Dynamic Set Operations

ñ S. union(S′): Sets S := S ∪ S′. The set S′ is destroyed.

ñ S.merge(S′): Sets S := S ∪ S′. Requires S ∩ S′ = �.
ñ S. split(k, S′):
S := {x ∈ S | key[x] ≤ k}, S′ := {x ∈ S | key[x] > k}.

ñ S. concatenate(S′): S := S ∪ S′.
Requires S.maximum() ≤ S′.minimum().

ñ S. decrease-key(x, k): Replace key[x] by k ≤ key[x].
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Examples of ADTs

Stack:

ñ S.push(x): Insert an element.

ñ S.pop(): Return the element from S that was inserted most

recently; delete it from S.

ñ S.empty(): Tell if S contains any object.

Queue:

ñ S.enqueue(x): Insert an element.

ñ S.dequeue(): Return the element that is longest in the

structure; delete it from S.

ñ S.empty(): Tell if S contains any object.

Priority-Queue:

ñ S.insert(x): Insert an element.

ñ S.delete-min(): Return the element with lowest key-value;

delete it from S.

7 Dictionary

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.
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7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary

tree. Each tree-node corresponds to an element. All elements in

the left sub-tree of a node v have a smaller key-value than

key[v] and elements in the right sub-tree have a larger-key

value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

6

2 7

1 5 8

1

2

5

6

7

8
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7.1 Binary Search Trees

We consider the following operations on binary search trees.

Note that this is a super-set of the dictionary-operations.

ñ T. insert(x)
ñ T. delete(x)
ñ T. search(k)
ñ T. successor(x)
ñ T. predecessor(x)
ñ T.minimum()
ñ T.maximum()
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Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30
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Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

Binary Search Trees: Searching

TreeSearch(root, 8) 25
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Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

Binary Search Trees: Minimum
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Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

Binary Search Trees: Successor
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succ is min in
right sub-tree
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Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;



Binary Search Trees: Successor

25
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succ is lowest
ancestor going
left to reach me

x

y
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Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25
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Search for z. At some

point the search stops

at a null-pointer. This

is the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then
2: root[T]← z; parent[z]← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x]← z; parent[z]← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then

10: right[x]← z; parent[z]← x;
11: else TreeInsert(right[x], z);

Binary Search Trees: Delete
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Case 1:

Element does not have any children
ñ Simply go to the parent and set the corresponding pointer

to null.

Binary Search Trees: Delete
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Case 2:

Element has exactly one child

ñ Splice the element out of the tree by connecting its parent

to its successor.



Binary Search Trees: Delete
25
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Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x]← parent[y];
6: if parent[y] = null then
7: root[T]← x
8: else
9: if y = left[parent[y]] then

10: left[parent[y]]← x
11: else
12: right[parent[y]]← x
13: if y ≠ z then copy y-data to z

select y to splice out

x is child of y (or null)
parent[x] is correct

fix pointer to x

fix pointer to x
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees,

AA trees, Treaps

similar: SPLAY trees.
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Binary Search Trees (BSTs)
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7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data
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Red Black Trees: Example
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20
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7.2 Red Black Trees

Lemma 12

A red-black tree with n internal nodes has height at most

O(logn).

Definition 13

The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.
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7.2 Red Black Trees

Proof of Lemma 14.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.
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7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.
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7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).
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7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data.
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7.2 Red Black Trees

We need to adapt the insert and delete operations so that the

red black properties are maintained.
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Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)
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Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

z
Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties
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Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.
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Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

z in left subtree of grandparent

Case 1: uncle red

Case 2: uncle black

2a: z right child

2b: z left child
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Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress
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13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree
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13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.
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13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h
is the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case

at most once, we get a red-black tree. Hence O(logn)
re-colorings and at most 2 rotations.
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Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

© Ernst Mayr, Harald Räcke 152

Red Black Trees: Delete
25

13 3041
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Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.
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Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates
that it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F



Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step

at most once, we get a red black tree. Hence, O(logn)
re-colorings and at most 3 rotations.
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Red-Black Trees
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7.3 AVL-Trees

Definition 15

AVL-trees are binary search trees that fulfill the following

balance condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 16

An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 161

AVL trees

Proof.

The upper bound is clear, as a binary tree of height h can only

contain
h−1∑

j=0

2j = 2h − 1

internal nodes.
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AVL trees

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2
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Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

gh := 1+minimal size of AVL-tree of height h .

Then

g1 = 2 = F3

g2 = 3 = F4

gh − 1 = 1+ gh−1 − 1+ gh−2 − 1 , hence

gh = gh−1 + gh−2 = Fh+2

7.3 AVL-Trees

An AVL-tree of height h contains at least Fh+2 − 1 internal nodes.

Since

n+ 1 ≥ Fh+2 = Ω


(

1+√5
2

)h
 ,

we get

n ≥ Ω


(

1+√5
2

)h
 ,

and, hence, h = O(logn).
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7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .
balance[v] := height(Tc`)− height(Tcr ) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,
respectively.
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Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)
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Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let w denote the parent of the newly inserted node x.

ñ One of the following cases holds:

w

x

bal(w) = −1

w

x a

bal(w) = 0

w

xa

bal(w) = 0

w

x

bal(w) = 1

ñ If bal[w] ≠ 0, Tw has changed height; the

balance-constraint may be violated at ancestors of w.

ñ Call AVL-fix-up-insert(parent[w]) to restore the

balance-condition.

Note that before the insertion w is right
above the leaf level, i.e., x replaces a
child of w that was a dummy leaf.

EADS 7.3 AVL-Trees

© Ernst Mayr, Harald Räcke 169

AVL-trees: Insert

Invariant at the beginning of AVL-fix-up-insert(v):

1. The balance constraints hold at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not

change its height, and the whole procedure would have

been aborted in the previous step.

Note that these constraints hold for the
first call AVL-fix-up-insert(parent[w]).
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AVL-trees: Insert

Algorithm 11 AVL-fix-up-insert(v)
1: if balance[v] ∈ {−2,2} then DoRotationInsert(v);
2: if balance[v] ∈ {0} return;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will

do at most one rotation.
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AVL-trees: Insert

Algorithm 12 DoRotationInsert(v)
1: if balance[v] = −2 then // insert in right sub-tree
2: if balance[right[v]] = −1 then
3: LeftRotate(v);
4: else
5: DoubleLeftRotate(v);
6: else // insert in left sub-tree
7: if balance[left[v]] = 1 then
8: RightRotate(v);
9: else

10: DoubleRightRotate(v);
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AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long

as no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the

right sub-tree of v. The other case is symmetric.
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AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in

a balance of −2 at v.

Before the insertion the height of Tv was h+ 1.
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Case 1: balance[right[v]] = −1

We do a left rotation at v

Now, the subtree has height h+ 1 as before the insertion.

Hence, we do not need to continue.
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v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate(v)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate(x)

DoubleLeftRotate(v)

Height is h+ 1, as
before the insert.

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed—is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call AVL-fix-up-delete(v) to restore the balance-condition.
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AVL-trees: Delete

Invariant at the beginning AVL-fix-up-delete(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has decreased its height by one.

4. The balance at the node c fulfills balance[c] = 0. This holds

because if the balance of c is in {−1,1}, then Tc did not

change its height, and the whole procedure would have

been aborted in the previous step.
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AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for

the case of a delete there may be a logarithmic number of

rotations.
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AVL-trees: Delete

Algorithm 14 DoRotationDelete(v)
1: if balance[v] = −2 then // deletion in left sub-tree
2: if balance[right[v]] ∈ {0,−1} then
3: LeftRotate(v);
4: else
5: DoubleLeftRotate(v);
6: else // deletion in right sub-tree
7: if balance[left[v]] = {0,1} then
8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

Note that the case distinction on the second level (bal[right[v]]
and bal[left[v]]) is not done w.r.t. the child c for which the sub-
tree Tc has changed. This is different to AVL-fix-up-insert.
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AVL-trees: Delete

It is clear that the invariant for the fix-up routine hold as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills the balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.
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AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in

a balance of 2 at v.

Before the deletion the height of Tv was h+ 2.
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Case 1: balance[left[v]] ∈ {0, 1}

If the middle subtree has height h the whole tree has height

h+ 2 as before the deletion. The iteration stops as the balance

at the root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate(v)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(x)

RightRotate(v)

DoubleRightRotate(v)Sub-tree has height
h+ 1, i.e., it has
shrunk. The
balance at y is
zero. We continue
the iteration.

AVL Trees
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7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the `-th element; return “error” if

the data-structure contains less than ` elements.

Augment an existing data-structure instead of developing a

new one.
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7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

4. How does find-by-rank work?

Find-by-rank(k) Í Select(root, k) with

Algorithm 15 Select(x, i)
1: if x = null then return error

2: if left[x] ≠ null then r ← left[x]. size+1 else r ← 1

3: if i = r then return x
4: if i < r then

5: return Select(left[x], i)
6: else

7: return Select(right[x], i− r)
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Select(x, i)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

select( 25 , 14)

select( 13 , 14)

select( 21 , 5)

select( 16 , 5)

select( 19 , 3)

select( 20 , 1)

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size

counter on every node on this path. Maintain the size field

during rotations.
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Rotations

The only operation during the fix-up procedure that alters the

tree and requires an update of the size-field:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

|A|+|B|+|C|+2 |A|+|B|+|C|+2

|A|+|B|+1|B|+|C|+1

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields

of the children.
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Augmenting Data Structures
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7.5 (a, b)-trees

Definition 17

For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most

b children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞
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7.5 (a, b)-trees

Each internal node v with d(v) children stores d− 1 keys

k1, . . . , kd − 1. The i-th subtree of v fulfills

ki−1 < key in i-th sub-tree ≤ ki ,

where we use k0 = −∞ and kd = ∞.
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7.5 (a, b)-trees

Example 18

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞
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7.5 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; it only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as

opposed to 1/2-full (the requirement of a B-tree).

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 195

Lemma 19

Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ 1+ loga(

n+1
2 )

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and,

hence, the number of leaf nodes at most bh.
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Search

Search(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.
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Search

Search(19)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞19

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.
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Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node

v on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).
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Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.
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Insert

Insert(7)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞
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Insert

Insert(7)

1

1 3

5 6 7 8

5 6 7 8 10

14 28

3 10 19

14 19 28 ∞7
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Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 6 10 19

14 19 28 ∞
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Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 10 19

6

14 19 28 ∞
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Delete

Delete element x (pointer to leaf vertex):

ñ Let v denote the parent of x. If key[x] is contained in v,

remove the key from v, and delete the leaf vertex.

ñ Otherwise delete the key of the predecessor of x from v;

delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it

appears in exactly one internal vertex).

ñ If now the number of keys in v is below a− 1 perform

Rebalance′(v).
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Delete

Rebalance′(v):
ñ If there is a neighbour of v that has at least a keys take

over the largest (if right neighbor) or smallest (if left

neighbour) and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1

keys, and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this

case the root is deleted and the height of the tree decreases.
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Delete

Animation for deleting in an

(a, b)-tree is only available in the

lecture version of the slides.
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(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

1 3 4 5 8 11 13 17 18 19 20 22 25 27 41 43 47 ∞

First make it into an internal search tree by
moving the satellite-data from the leaves to
internal nodes. Add dummy leaves.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.
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(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Then, color one key in each internal node v
black. If v contains 3 keys you need to select
the middle key otherwise choose a black key
arbitrarily. The other keys are colored red.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.
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(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Re-attach the pointers to individual keys. A
pointer that is between two keys is attached as
a child of the red key. The incoming pointer,
points to the black key.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.
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(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1

3 5

11

13

18

19 22 27

43

47

17

4

8

20

25

41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.5 (a, b)-trees

© Ernst Mayr, Harald Räcke 204
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7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(n)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞
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7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”,

and |L0| = n the number of all elements (ignoring dummy

elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).
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7.6 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At

most |Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.
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7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr).
Choose r = n 1

k+1 . Then

r−kn+ kr =
(
n

1
k+1

)−k
n+ kn 1

k+1

= n1− k
k+1 + kn 1

k+1

= (k+ 1)n
1
k+1 .

Choosing k = Θ(logn) gives a logarithmic running time.
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7.6 Skip Lists

How to do insert and delete?

ñ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require

a lot of re-organisation.

Use randomization instead!
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7.6 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists it actually appears in.

The time for both operations is dominated by the search

time.
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7.6 Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞
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High Probability

Definition 20 (High Probability)

We say a randomized algorithm has running time O(logn) with

high probability if for any constant α the running time is at most

O(logn) with probability at least 1− 1
nα .

Here the O-notation hides a constant that may depend on α.
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High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≥ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.
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7.6 Skip Lists

Lemma 21

A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).
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7.6 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
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(
n
k

)k
≤
(
n
k

)
≤
(
en
k

)k

(
n
k

)
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
(
n
k

)k

(
n
k

)
= n · . . . · (n− k+ 1)

k!
≤ n

k

k!
= n

k · kk
kk · k!

=
(
n
k

)k
· k

k

k!
≤
(
en
k

)k
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7.6 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that

tell you to go up) in z trials.
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7.6 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
2−βk ·n−γα ≤

(
2ez
2βk

)k
·n−α

≤
(

2e(β+α)
2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.
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7.6 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.
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7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is

determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.
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7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ |U|.
ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.
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Direct Addressing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

∅
k6

k3

∅
∅
k7

∅
k1

This special case is known as Direct Addressing. It is usually

very unrealistic as the universe of keys typically is quite large,

and in particular larger than the available memory.
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Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅
k6

k3

∅
∅
k7

∅
k1

Such a hash function h is called a perfect hash function for set S.
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Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that

map to the same memory location (i.e., h(k1) = h(k2)). This is

called a collision.
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Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 22

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].
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Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.
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Collisions

− 3 −2 −1 1 2 3

1

2

3

4

x

f(x) e−x

1− x

The inequality 1− x ≤ e−x is derived by stopping the

Taylor-expansion of e−x after the second term.
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Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

ñ open addressing, aka. closed hashing

ñ hashing with chaining, aka. closed addressing, open

hashing.

There are applications e.g. computer chess where you do not

resolve collisions at all.
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Hashing with Chaining

Arrange elements that map to the same position in a linear list.

ñ Access: compute h(x) and search list for key[x].
ñ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

∅

∅
∅

∅
k1 k4 ∅

k5 k2 k7 ∅

k3 ∅

k8 k6 ∅
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.
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Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is

α = m
n . Hence, if A is the collision resolving strategy “Hashing

with Chaining” we have

A− = 1+α .
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Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]keys before ki

cost for key ki
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Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .
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Hashing with Chaining

Disadvantages:

ñ pointers increase memory requirements

ñ pointers may lead to bad cache efficiency

Advantages:

ñ no à priori limit on the number of elements

ñ deletion can be implemented efficiently

ñ by using balanced trees instead of linked list one can also

obtain worst-case guarantees.
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Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2), . . . .

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.
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Open Addressing

Choices for h(k, j):
ñ Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

ñ Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

ñ Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure

that the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).
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Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 23

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)
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Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe

sequence.

Lemma 24

Let Q be the method of quadratic probing for resolving

collisions:

Q+ ≈ 1+ ln
( 1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

( 1
1−α

)
−α
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Double Hashing

ñ Any probe into the hash-table usually creates a cache-miss.

Lemma 25

Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
( 1

1−α
)

D− ≈ 1
1−α
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Open Addressing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2
0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20
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Open Addressing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

α

#probes

L− Q− D−

L+ Q+ D+
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Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open

Addressing scheme.

ñ The probe sequence h(k,0), h(k,1), h(k,2), . . . is equally

likely to be any permutation of 〈0,1, . . . , n− 1〉.
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Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .
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Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .
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Analysis of Idealized Open Address Hashing

i = 3

1 2 3 4 5 6 7

i

Pr[X = i] ∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)
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Analysis of Idealized Open Address Hashing

i = 4

1 2 3 4 5 6 7

i

Pr[X = i] ∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)
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Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .
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Analysis of Idealized Open Address Hashing

m−n m−n+ 1 n

1
m−n+1

1
m−n+2

1
n

f(x) = 1
x

x

f(x)

n∑

k=m−n+1

1
k
≤
∫ n
m−n

1
x

dx
∫ n
m−n

1
x

dx
n∑

k=m−n+1

1
k

EADS 7.7 Hashing

© Ernst Mayr, Harald Räcke 247

Deletions in Hashtables

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.
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Deletions in Hashtables

ñ Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

ñ One can delete an element by replacing it with a
deleted-marker.

ñ During an insertion if a deleted-marker is encountered an
element can be inserted there.

ñ During a search a deleted-marker must not be used to
terminate the probe sequence.

ñ The table could fill up with deleted-markers leading to bad

performance.

ñ If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.
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Deletions for Linear Probing

ñ For Linear Probing one can delete elements without using

deletion-markers.

ñ Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.
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Deletions for Linear Probing

Algorithm 16 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.
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Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .
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Universal Hashing

Definition 26

A class H of hash-functions from the universe U into the set

{0, . . . , n−1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .
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Universal Hashing

Definition 27

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.
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Universal Hashing

Definition 28

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ` ≤ k
distinct keys u1, . . . , u` ∈ U , and for any set of ` not necessarily

distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
1

n`
,

where the probability is w. r. t. the choice of a random

hash-function from set H .
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Universal Hashing

Definition 29

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

` ≤ k distinct keys u1, . . . , u` ∈ U , and for any set of ` not

necessarily distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
µ
n`

,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

© Ernst Mayr, Harald Räcke 256

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 30

The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.
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Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).
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Universal Hashing
ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ty − ay (mod p)

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne
values.
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Universal Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .
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Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[
tx mod n=h1∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty ) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.
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Universal Hashing

Definition 31

Let d ∈ N; q ≥ (d+ 1)n be a prime; and let

ā ∈ {0, . . . , q − 1}d+1. Define for x ∈ {0, . . . , q − 1}

hā(x) :=
( d∑

i=0

aixi mod q
)

mod n .

Let H d
n := {hā | ā ∈ {0, . . . , q − 1}d+1}. The class H d

n is

(e, d+ 1)-independent.

Note that in the previous case we had d = 1 and chose ad ≠ 0.
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Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
( d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

© Ernst Mayr, Harald Räcke 264

Universal Hashing

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A` a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

• A` denotes the set of hash-
functions such that every xi
hits its pre-defined position
ti.

• Bi is the set of positions that
fā can hit so that hā still hits
ti.

Universal Hashing

Now, we choose d− ` + 1 other inputs and choose their value

arbitrarily. We have qd−`+1 possibilities to do this.

Therefore we have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.
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Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n )

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.
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Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅
k6

k3

∅
∅
k7

∅
k1
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .
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Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function

that maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are

mapped to different locations.
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Perfect Hashing

k1

k2
k3

k4
k5

k6
k7

k8

∅ m2 m3 ∅ ∅ m6 ∅ m8

U
universe
of keys

S (actual keys)

k1 k6 ∅ k4 ∅ ∅ ∅ k3 k2 ∅ ∅ ∅ k8 k5 ∅ ∅ k7 ∅

∑
imi =m

m2
2 m2

3 m2
6 m2

8
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Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j ). Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .
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Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m), because with probability at least 1/2 a random

function from a universal family will have this property.

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket. A random function hj is

collision-free with probability at least 1/2. We need O(mj) to test

this.

We only need that the hash-functions are chosen from a

universal family!!!
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Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search

time in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint

is met.
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Cuckoo Hashing

Insert:

∅
∅
x1

x4

∅
∅
x7

∅
∅

∅
x3

∅
x6

∅
∅
x9

∅
∅

T1 T2

x x

x7

x6

x1

x7

x6

x1
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Cuckoo Hashing

Algorithm 17 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: steps← steps+1
9: rehash() // change hash-functions; rehash everything

10: Cuckoo-Insert(x)
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Cuckoo Hashing

ñ We call one iteration through the while-loop a step of the

algorithm.

ñ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

ñ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.
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Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?
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Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x11

x12

x8

x4

x3

x2

x = x1

x9

x10

x11

x
12

xx2x3x4x5x6x7x8x4x3x2x = x1x9x10x11x12x3
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Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.
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Cuckoo Hashing

A cycle-structure is active if for every key x` (linking a cell pi
from T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there

must exist an active cycle structure of size s ≥ 3.
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size

s correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independet.
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Cuckoo Hashing

The probability that a given cycle-structure of size s is active is

at most µ2

n2s .

What is the probability that there exists an active cycle structure

of size s?
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Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the

forward and backward links.

ñ There are at most s possibilities to choose where to place

key x.

ñ There are ms−1 possibilities to choose the keys apart from

x.

ñ There are ns−1 possibilities to choose the cells.
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Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.
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Cuckoo Hashing

Now, we analyze the probability that a phase is not successful

without running into a closed cycle.
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Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7

Sequence of visited keys:

x = x1, x2, x3, x4, x5, x6, x7, x3, x2, x1 = x, x8, x9, . . .
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Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting

with x in the order that they are visited during the phase.

Lemma 32

If the sequence is of length p then there exists a sub-sequence of

at least p+2
3 keys starting with x of distinct keys.
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Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

x = x1 → x2 → ·· · → xi → xr → xr−1 → ·· · → x1 → xi+1 → ·· · → xj

As r ≤ i− 1 the length p of the sequence is

p = i+ r + (j − i) ≤ i+ j − 1 .

Either sub-sequence x1 → x2 → ·· · → xi or sub-sequence

x1 → xi+1 → ·· · → xj has at least p+2
3 elements.

Taking x1 → ·· · → xi twice, and x1 → xi+1 → . . . xj once
gives 2i+ (j − i+ 1) = i+ j + 1 ≥ p + 2 keys. Hence, one of
the sequences contains at least (p + 2)/3 keys.
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Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

ñ s + 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is either from T1 or T2.
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Cuckoo Hashing

A path-structure is active if for every key x` (linking a cell pi
from T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If a phase takes at least t steps without running into a cycle

there must exist an active path-structure of size (2t + 2)/3.

Note that we count complete steps. A search
that touches 2t or 2t + 1 keys takes t steps.
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Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
(
m
n

)s−1

≤ 2µ2
(

1
1+ ε

)s−1

≤ 2µ2
(

1
1+ ε

)(2t+2)/3−1

= 2µ2
(

1
1+ ε

)(2t−1)/3
.
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Cuckoo Hashing

We choose maxsteps ≥ 3`/2+ 2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps−1
3 ]

≤ Pr[∃ active path-structure of size at least ` + 1]

≤ Pr[∃ active path-structure of size exactly ` + 1]

≤ 2µ2
( 1

1+ ε
)` ≤ 1

m2

by choosing ` ≥ log
( 1

2µ2m2

)
/log

( 1
1+ε

) = log
(
2µ2m2

)
/log

(
1+ ε)

This gives maxsteps = Θ(logm). Note that the existence of a path structure of
size larger than s implies the existence of a
path structure of size exactly s.
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Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
( 1
m2

)

and

Pr[unsuccessful | no cycle] ≤ O
( 1
m2

)

Observe that

Pr[successful] = Pr[no cycle]− Pr[unsuccessful | no cycle]

≥ c · Pr[no cycle]

for a suitable constant c > 0. This is a very weak (and trivial)
statement but still sufficient for
our asymptotic analysis.
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Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .

Pr[A | B] = Pr[A∧ B]
Pr[B]

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

∑

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

∑

t≥1

2µ2
( 1

1+ ε
)(2t−1)/3

≤ 2µ2(1+ ε)2/3
c

∑

t≥0

( 1
(1+ ε)2/3

)t = O(1) .

This means the expected cost for a successful phase is constant

(even after accounting for the cost of the incomplete step that

finishes the phase).
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Cuckoo Hashing

A phase that is not successful induces cost O(m) for doing a

complete rehash (this dominates the cost for the steps in the

phase).

The probability that a phase is not successful is p = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

The expected number of unsuccessful phases is∑
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1/m).
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Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure

or cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.
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Cuckoo Hashing

How do we make sure that n ≥ (1 + ε)m?

ñ Let α := 1/(1+ ε).
ñ Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

ñ Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

ñ Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

ñ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.
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Cuckoo Hashing

Lemma 33

Cuckoo Hashing has an expected constant insert-time and a

worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number

of keys/total number of hash-table slots) is at most 1
2(1+ε) .

EADS 7.7 Hashing

© Ernst Mayr, Harald Räcke 300

Hashing
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8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ element S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ boolean S.is-empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
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8 Priority Queues

An addressable Priority Queue also supports:

ñ handle S.insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S.delete(h): Deletes element specified through handle h.

ñ S.decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least

k before the operation.
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Dijkstra’s Shortest Path Algorithm

Algorithm 18 Shortest-Path(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. (v,x) ∈ E do
11: if x.key > v.key+d(v,x) then
12: S.decrease-key(hx,v.key+d(v,x));
13: x.key← v.key+d(v,x);
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Prim’s Minimum Spanning Tree Algorithm

Algorithm 19 Prim-MST(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: pred-fields encode MST;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. {v,x} ∈ E do
11: if x.key > d(v,x) then
12: S.decrease-key(hx,d(v,x));
13: x.key← d(v,x);
14: x.pred← v;
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Analysis of Dijkstra and Prim

Both algorithms require:

ñ 1 build() operation

ñ |V | insert() operations

ñ |V | delete-min() operations

ñ |V | is-empty() operations

ñ |E| decrease-key() operations

How good a running time can we obtain?

EADS 8 Priority Queues

© Ernst Mayr, Harald Räcke 305



8 Priority Queues

Operation
Binary
Heap

BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1
is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

** The standard version of binary heaps is not address-
able. Hence, it does not support a delete.

* Fibonacci heaps only give an
amortized guarantee.
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8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time

O((|V | + |E|) log |V |).

Using Fibonacci Heaps, Prim and Dijkstra run in time

O(|V | log |V | + |E|).

EADS 8 Priority Queues

© Ernst Mayr, Harald Räcke 307

8.1 Binary Heaps

ñ Nearly complete binary tree; only the last level is not full,

and this one is filled from left to right.

ñ Heap property: A node’s key is not larger than the key of

one of its children.

7

159

19311117

13 1225 43 80
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Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).
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8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost

element

7

159

19311117

13 1225 43 80 x
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8.1 Binary Heaps
Maintain a pointer to the last element x.
ñ We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost

element; insert a new element as a left child;

7

159

19311117

13 1225 43 80 x
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Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

15

9

19

31

1117

13 1225 43 80 x1 x

14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.
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Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

9

16 19121718

27 2025 43 13 x1 x

13e

At its new position e may either travel up or down in the tree

(but not both directions).
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Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).
ñ insert(k): insert at x and bubble up. Time O(logn).
ñ delete(h): swap with x and bubble up or sift-down. Time

O(logn).
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Build Heap

We can build a heap in linear time:

31

30

2928 27 26 2524 23 22 21 20 19 18

17

16

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)
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Binary Heaps

Operations:

ñ minimum(): Return the root-element. Time O(1).
ñ is-empty(): Check whether root-pointer is null. Time O(1).
ñ insert(k): Insert at x and bubble up. Time O(logn).
ñ delete(h): Swap with x and bubble up or sift-down. Time

O(logn).
ñ build(x1, . . . , xn): Insert elements arbitrarily; then do

sift-down operations starting with the lowest layer in the

tree. Time O(n).
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Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements

don’t maintain their positions and therefore there are no stable

handles.
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8.2 Binomial Heaps

Operation
Binary
Heap

BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1
is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn log n 1
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Binomial Trees

B0 B1 B2 B3 B4

Bt−1

Bt−1

Bt
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Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.
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Binomial Trees

B4

B3

B2

B1

B0

Deleting the root of B5 leaves sub-trees B4, B3, B2, B1, and B0.
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Binomial Trees

B4

B3

B2

B1

B0

Deleting the leaf furthest from the root (in B5) leaves a path that

connects the roots of sub-trees B4, B3, B2, B1, and B0.
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Binomial Trees

Bk−1

Bk−1

Bk

(
k−1
`

)

(
k−1
`−1

)

The number of nodes on level ` in tree Bk is therefore

(
k− 1
` − 1

)
+
(
k− 1
`

)
=
(
k
`

)
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Binomial Trees

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bn, . . . , b1, b0 is obtained by

setting the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft
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8.2 Binomial Heaps

ñ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

ñ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .
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Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For

example the above heap contains trees B0, B1, and B4.
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the binary

representation of n.
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Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote binary representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with

different binomial trees. We can simply

merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.
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8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).
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8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
ñ Create a new heap S′ that contains just the element x.

ñ Execute S.merge(S′).
ñ Time: O(logn).
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8.2 Binomial Heaps

S.minimum():
ñ Find the minimum key-value among all roots.

ñ Time: O(logn).
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8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just

O(logn) trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).
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8.2 Binomial Heaps

S.decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).
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8.2 Binomial Heaps

S.delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).
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Amortized Analysis

Definition 34

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with

an empty data-structure) that operate on at most n elements,

and let ki denote the number of occurences of opi() within this

sequence. Then the actual running time must be at most∑
i ki · ti(n).
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Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i=1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound

on the total cost.
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Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the

stack.

ñ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.
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Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .
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Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).
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Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the

number of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

7 24

4626

35

23 17
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5241
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18
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min
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8.3 Fibonacci Heaps

Additional implementation details:

ñ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

ñ Every node stores a boolean value x.marked that specifies

whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:

ñ t(S) denotes the number of trees in the heap.

ñ m(S) denotes the number of marked nodes.

ñ We use the potential function Φ(S) = t(S)+ 2m(S).

7 24

4626

35

23 17

30

3

5241

44

18

39

min

The potential is Φ(S) = 5+ 2 · 3 = 11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S.minimum()

ñ Access through the min-pointer.

ñ Actual cost O(1).
ñ No change in potential.

ñ Amortized cost O(1).
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8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

x

Running time:
ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).

x is inserted next to the min-pointer as
this is our entry point into the root-list.
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8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).
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ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).
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8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).
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ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).
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8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:
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0 1 2 3

xx x x x

current
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.

Actual cost for delete-min()
ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)
for c ≥ c1 .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will

be a set of distinct binomial trees, and, hence, the Fibonacci

heap will be (more or less) a Binomial heap right after the

consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x,

and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x,

and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.
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Fibonacci Heaps: decrease-key(handle h, v)

Marking a node can be viewed as a
first step towards becoming a
root. The first time x loses a child
it is marked; the second time it
loses a child it is made into a root.

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(`+1)+c(4−`) ≤ (c2−c)`+4c+c2 = O(1) ,
if c ≥ c2.
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Delete node

H. delete(x):
ñ decrease value of x to −∞.

ñ delete-min.

Amortized cost: O(Dn)
ñ O(1) for decrease-key.

ñ O(Dn) for delete-min.
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8.3 Fibonacci Heaps

Lemma 35

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
{

0 if i = 1

i− 2 if i > 1

The marking process is very important for the proof of
this lemma. It ensures that a node can have lost at most
one child since the last time it became a non-root node.
When losing a first child the node gets marked; when
losing the second child it is cut from the parent and
made into a root.
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8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.
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8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si
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8.3 Fibonacci Heaps

Definition 36

Consider the following non-standard Fibonacci type sequence:

Fk =




1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+∑k−2

i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.
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Priority Queues

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fi-
bonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial
heaps.

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps
are dealt with in Exercise 6.11.

EADS 8.3 Fibonacci Heaps

© Ernst Mayr, Harald Räcke 363

9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

ñ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

ñ P. find(x): Given a handle for an element x; find the set

that contains x. Returns a representative/identifier for this

set.

ñ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.
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9 Union Find

Applications:

ñ Keep track of the connected components of a dynamic

graph that changes due to insertion of nodes and edges.

ñ Kruskals Minimum Spanning Tree Algorithm
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9 Union Find

Algorithm 1 Kruskal-MST(G = (V , E),w)
1: A← �;

2: for all v ∈ V do

3: v. set← P.makeset(v. label)
4: sort edges in non-decreasing order of weight w
5: for all (u,v) ∈ E in non-decreasing order do

6: if P.find(u. set) ≠ P.find(v. set) then

7: A← A∪ {(u,v)}
8: P.union(u. set, v. set)
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List Implementation

ñ The elements of a set are stored in a list; each node has a

backward pointer to the head.

ñ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

∅

ñ makeset(x) can be performed in constant time.

ñ find(x) can be performed in constant time.
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List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy ), and change all backward

pointers to the head of list Sx.

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.
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List Implementation

Sx

7

a b c d x f g

∅

Sy
4

h i y j

∅
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List Implementation

Sx

11

a b c d x f g

∅

Sy
4

h i y j
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List Implementation

Running times:

ñ find(x): constant

ñ makeset(x): constant

ñ union(x,y): O(n), where n denotes the number of

elements contained in the set system.
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List Implementation

Lemma 37

The list implementation for the ADT union find fulfills the

following amortized time bounds:

ñ find(x): O(1).
ñ makeset(x): O(logn).
ñ union(x,y): O(1).
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The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds

are proven.
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List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.
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List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and

the actual cost to be the same. Hence, this operation does not

change any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.
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List Implementation

Lemma 38

An element is charged at most blog2nc times, where n is the

total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in

x’s set doubles. This can happen at most blognc times.
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Implementation via Trees

ñ Maintain nodes of a set in a tree.

ñ The root of the tree is the label of the set.

ñ Only pointer to parent exists; we cannot list all elements of

a given set.

ñ Example:
10

12 5

2

6

9

3

8

14 17

7

16

19 23

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.
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Implementation via Trees

makeset(x)
ñ Create a singleton tree. Return pointer to the root.

ñ Time: O(1).

find(x)
ñ Start at element x in the tree. Go upwards until you reach

the root.

ñ Time: O(level(x)), where level(x) is the distance of

element x to the root in its tree. Not constant.
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Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

11

1

1

2

4

ñ Time: constant for link(a, b) plus two find-operations.
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Implementation via Trees

Lemma 39

The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

ñ When we attach a tree with root c to become a child of a

tree with root p, then size(p) ≥ 2 size(c), where size

denotes the value of the size-field right after the operation.

ñ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

ñ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.
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Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

2

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

One could change the algorithm to
update the size-fields. This could
be done without asymptotically af-
fecting the running time.

However, the only size-field that is
actually required is the field at the
root, which is always correct.

We will only use the other size-
fields for the proof of Theorem 42.
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Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12

2

5

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

2

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

One could change the algorithm to
update the size-fields. This could
be done without asymptotically af-
fecting the running time.

However, the only size-field that is
actually required is the field at the
root, which is always correct.

We will only use the other size-
fields for the proof of Theorem 42.
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Path Compression

Asymptotically the cost for a find-operation does not increase

due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on

the running time. It can still happen that a find-operation takes

time O(logn).
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Amortized Analysis

Definitions:

ñ size(v) Í the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or

the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the

case that there are no find-operations.

ñ rank(v) Í blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 40

The rank of a parent must be strictly larger than the rank of a

child.
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Amortized Analysis

Lemma 41

There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees node x if v is in x’s sub-tree at the

time that x becomes a child.

ñ A node v sees at most one node of rank s during the

running time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contain v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.
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Amortized Analysis

We define

tow(i) :=
{

1 if i = 0

2tow(i−1) otw.
tow(i) = 222222

i times

and

log∗(n) :=min{i | tow(i) ≥ n} .

Theorem 42

Union find with path compression fulfills the following amortized

running times:

ñ makeset(x) : O(log∗(n))
ñ find(x) : O(log∗(n))
ñ union(x,y) : O(log∗(n))
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Amortized Analysis

In the following we assume n ≥ 2.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 2).

ñ Hence, the total number of rank-groups is at most log∗n.
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Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.
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Amortized Analysis

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned.

The rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1)− 1 ≤ tow(g).

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 386

Amortized Analysis

What is the total charge made to nodes?

ñ The total charge is at most

∑
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.
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Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 9 Union Find

© Ernst Mayr, Harald Räcke 388

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).
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Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).
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Amortized Analysis

A(x,y) =




y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) =min{i ≥ 1 : A(i, bm/nc) ≥ logn}

ñ A(0, y) = y + 1

ñ A(1, y) = y + 2

ñ A(2, y) = 2y + 3

ñ A(3, y) = 2y+3 − 3

ñ A(4, y) = 2222

︸ ︷︷ ︸
y+3 times

−3
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Union Find
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10 van Emde Boas Trees

Dynamic Set Data Structure S:

ñ S. insert(x)
ñ S.delete(x)
ñ S. search(x)
ñ S.min()
ñ S.max()
ñ S. succ(x)
ñ S.pred(x)
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10 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

ñ S. insert(x): Inserts x into S.

ñ S. delete(x): Deletes x from S. Usually assumes that x ∈ S.

ñ S.member(x): Returns 1 if x ∈ S and 0 otw.

ñ S.min(): Returns the value of the minimum element in S.

ñ S.max(): Returns the value of the maximum element in S.

ñ S. succ(x): Returns successor of x in S. Returns null if x is

maximum or larger than any element in S. Note that x
needs not to be in S.

ñ S. pred(x): Returns the predecessor of x in S. Returns null

if x is minimum or smaller than any element in S. Note that

x needs not to be in S.
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10 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from

a restricted set?

In the following we assume that the keys are from

{0,1, . . . , u− 1}, where u denotes the size of the universe.
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Implementation 1: Array

0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

u

content

size

one array of u bits

Use an array that encodes the indicator function of the dynamic

set.
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Implementation 1: Array

Algorithm 21 array.insert(x)
1: content[x]← 1;

Algorithm 22 array.delete(x)
1: content[x]← 0;

Algorithm 23 array.member(x)
1: return content[x];

ñ Note that we assume that x is valid, i.e., it falls within the

array boundaries.

ñ Obviously(?) the running time is constant.
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Implementation 1: Array

Algorithm 24 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.
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Implementation 1: Array

Algorithm 26 array.succ(x)
1: for (i = x + 1; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 27 array.pred(x)
1: for (i = x − 1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.
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Implementation 2: Summary Array

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

√
u

√
u

√
u

√
u

√
u

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

ñ
√
u cluster-arrays of

√
u bits.

ñ One summary-array of
√
u bits. The i-th bit in the summary

array stores the bit-wise or of the bits in the i-th cluster.
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Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 400



Implementation 2: Summary Array

Algorithm 28 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 29 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.
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Implementation 2: Summary Array

Algorithm 30 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ The running time is dominated by the cost of a minimum

computation on an array of size
√
u. Hence, O(√u).
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Implementation 2: Summary Array

Algorithm 31 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 32 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(√u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.
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Implementation 2: Summary Array

Algorithm 33 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.
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Implementation 2: Summary Array

Algorithm 34 pred(x)
1: m ← cluster[high(x)].pred(low(x))
2: if m ≠ null then return high(x) ◦m;

3: predcluster ← summary .pred(high(x));
4: if predcluster ≠ null then

5: offs ← cluster[predcluster].max();
6: return predcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.
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Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size
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Implementation 3: Recursion

We assume that u = 22k for some k.

The data-structure S(2) is defined as an array of 2-bits (end of

the recursion).
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Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We

only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 408



Implementation 3: Recursion

Algorithm 35 member(x)
1: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1.
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Implementation 3: Recursion

Algorithm 36 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ Tins(u) = 2Tins(
√
u)+ 1.
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Implementation 3: Recursion

Algorithm 37 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ Tdel(u) = 2Tdel(
√
u)+ Tmin(

√
u)+ 1.
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Implementation 3: Recursion

Algorithm 38 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Tmin(u) = 2Tmin(
√
u)+ 1.

EADS 10 van Emde Boas Trees

© Ernst Mayr, Harald Räcke 412



Implementation 3: Recursion

Algorithm 39 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Tsucc(u) = 2Tsucc(
√
u)+ Tmin(

√
u)+ 1.
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Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).
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Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).
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Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).
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Implementation 4: van Emde Boas Trees

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

3

min

13

max

u
size

ñ The bit referenced by min is not set within

sub-datastructures.

ñ The bit referenced by max is set within sub-datastructures

(if max ≠ min).
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Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.
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Implementation 4: van Emde Boas Trees

Algorithm 40 max()
1: return max;

Algorithm 41 min()
1: return min;

ñ Constant time.
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Implementation 4: van Emde Boas Trees

Algorithm 42 member(x)
1: if x =min then return 1; // TRUE

2: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1 =⇒ T(u) = O(log logu).
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Implementation 4: van Emde Boas Trees

Algorithm 43 succ(x)
1: if min ≠ null ∧ x < min then return min;

2: maxincluster ← cluster[high(x)].max();
3: if maxincluster ≠ null ∧ low(x) < maxincluster then

4: offs ← cluster[high(x)]. succ(low(x));
5: return high(x) ◦ offs;

6: else

7: succcluster ← summary . succ(high(x));
8: if succcluster = null then return null;

9: offs ← cluster[succcluster].min();
10: return succcluster ◦ offs;

ñ Tsucc(u) = Tsucc(
√
u)+ 1 =⇒ Tsucc(u) = O(log logu).
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Implementation 4: van Emde Boas Trees

Algorithm 44 insert(x)
1: if min = null then

2: min = x; max = x;

3: else

4: if x <min then exchange x and min;

5: if cluster[high(x)].min = null; then

6: summary . insert(high(x));
7: cluster[high(x)]. insert(low(x));
8: else

9: cluster[high(x)]. insert(low(x));
10: if x >max then max = x;

ñ Tins(u) = Tins(
√
u)+ 1 =⇒ Tins(u) = O(log logu).
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Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 7 takes constant time as the

if-condition in Line 5 ensures that we are inserting in an empty

sub-tree.

The only non-constant recursive calls are the call in Line 6 and in

Line 9. These are mutually exclusive, i.e., only one of these calls

will actually occur.

From this we get that Tins(u) = Tins(
√
u)+ 1.
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Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 45 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

find new minimum

delete
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Implementation 4: van Emde Boas Trees

Algorithm 45 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

fix maximum
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Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and

Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the

cluster where x was deleted is now empty. But this means that

the call in Line 9 deleted the last element in cluster[high(x)].
Such a call only takes constant time.

Hence, we get a recurrence of the form

Tdel(u) = Tdel(
√
u)+ c .

This gives Tdel(u) = O(log logu).
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10 van Emde Boas Trees

Space requirements:

ñ The space requirement fulfills the recurrence

S(u) = (√u+ 1)S(
√
u)+O(√u) .

ñ Note that we cannot solve this recurrence by the Master

theorem as the branching factor is not constant.

ñ One can show by induction that the space requirement is

S(u) = O(u). Exercise.
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ñ Let the “real” recurrence relation be

S(k2) = (k+ 1)S(k)+ c1 · k; S(4) = c2

ñ Replacing S(k) by R(k) := S(k)/c2 gives the recurrence

R(k2) = (k+ 1)R(k)+ ck; R(4) = 1

where c = c1/c2 < 1.

ñ Now, we show R(k) ≤ k− 2 for squares k ≥ 4.
ñ Obviously, this holds for k = 4.
ñ For k = `2 > 4 with ` integral we have

R(k) = (1+ `)R(`)+ c`
≤ (1+ `)(` − 2)+ ` ≤ k− 2

ñ This shows that R(k) and, hence, S(k) grows linearly.
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Part IV

Flows and Cuts
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11 Introduction

Flow Network

ñ directed graph G = (V , E); edge capacities c(e)
ñ two special nodes: source s; target t;
ñ no edges entering s or leaving t;
ñ at least for now: no parallel edges;

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10
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Cuts

Definition 43

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

Definition 44

The capacity of a cut A is defined as

cap(A,V \A) :=
∑

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum

capacity.
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Cuts

Example 45

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

A

The capacity of the cut is cap(A,V \A) = 28.
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Flows

Definition 46

An (s, t)-flow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑

e∈out(v)
f(e) =

∑

e∈into(v)
f(e) .

(flow conservation constraints)
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Flows

Definition 47

The value of an (s, t)-flow f is defined as

val(f ) =
∑

e∈out(s)
f(e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.
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Flows

Example 48

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

6|9

0|15

0|4

8|8

11|30

1|6

0|15

0|15

6|10

8|10

10|10

The value of the flow is val(f ) = 24.
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Flows

Lemma 49 (Flow value lemma)

Let f a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f ) =
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e) .
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Proof.

val(f ) =
∑

e∈out(s)
f(e)

=
∑

e∈out(s)
f(e)+

∑

v∈A\{s}

( ∑

e∈out(v)
f(e)−

∑

e∈in(v)
f(e)

)

=
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e)

The last equality holds since every edge with both end-points in

A contributes negatively as well as positively to the sum in

Line 2. The only edges whose contribution doesn’t cancel out

are edges leaving or entering A.
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Example 50

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

6|9

0|15

0|4

8|8

11|30

1|6

0|15

0|15

6|10

8|10

10|10

A
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Corollary 51

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f ′ with larger value. Then

cap(A,V \A) < val(f ′)

=
∑

e∈out(A)
f ′(e)−

∑

e∈into(A)
f ′(e)

≤
∑

e∈out(A)
f ′(e)

≤ cap(A,V \A)
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12 Augmenting Path Algorithms
Greedy-algorithm:

ñ start with f(e) = 0 everywhere

ñ find an s-t path with f(e) < c(e) on every edge

ñ augment flow along the path

ñ repeat as long as possible

0
20

|20

0
20

|30

0
20

|20

s

1

2

t

0|10

0|10
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):

ñ Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

ñ Gf has edge e′1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e′2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

G

Gf

u v

u v

10|20
14|16

24
12
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Augmenting Path Algorithm

Definition 52

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 46 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

EADS 12.1 The Generic Augmenting Path Algorithm

© Ernst Mayr, Harald Räcke 442

Augmenting Path Algorithm

Animation for augmenting path

algorithms is only available in the

lecture version of the slides.
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Augmenting Path Algorithm

Theorem 53

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 54

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A,B such that val(f ) = cap(A, B).

2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .
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Augmenting Path Algorithm

1. =⇒ 2.

This we already showed.

2. =⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. =⇒ 1.

ñ Let f be a flow with no augmenting paths.

ñ Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

ñ Since there is no augmenting path we have s ∈ A and t ∉ A.
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Augmenting Path Algorithm

val(f ) =
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e)

=
∑

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the

second exploits the fact that the flow along incoming edges

must be 0 as the residual graph does not have edges leaving A.
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Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.
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Lemma 55

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 56

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.
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A Bad Input

Problem: The running time may not be polynomial.

s

1

2

t

0|2000 0|2000

0|1

0|2000 0|2000

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
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A Bad Input

Problem: The running time may not be polynomial.

s

1

2

t

2000

0

2000

0

2000

0

2000

0

1

0

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
See the lecture-version of the slides for
the animation.
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A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.

s

2

3

4

5

6

7

t

∞

∞
∞∞

∞
∞

∞
∞

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

1

r

r2

r2

0

r + r2

0

r2

r

r2

0

r3

r4

r3

0

Running time may be infinite!!!
See the lecture-version of the slides for
the animation.
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How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.
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Overview: Shortest Augmenting Paths

Lemma 57

The length of the shortest augmenting path never decreases.

Lemma 58

After at most O(m) augmentations, the length of the shortest

augmenting path strictly increases.
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Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 59

The shortest augmenting path algorithm performs at most

O(mn) augmentations. This gives a running time of O(m2n).

Proof.

ñ We can find the shortest augmenting paths in time O(m)
via BFS.

ñ O(m) augmentations for paths of exactly k < n edges.
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Shortest Augmenting Paths

Define the level `(v) of a node as the length of the shortest s-v
path in Gf .

Let LG denote the subgraph of the residual graph Gf that

contains only those edges (u,v) with `(v) = `(u)+ 1.

A path P is a shortest s-u path in Gf if it is a an s-u path in LG.

Gf
LG

s

2

3

4

5 t

10

0
6

2

10
0

2

0

9
0

10
0

6

0
10

0

4
0

EADS 12.2 Shortest Augmenting Paths

© Ernst Mayr, Harald Räcke 455



In the following we assume that the residual graph Gf does not

contain zero capacity edges.

This means, we construct it in the usual sense and then delete

edges of zero capacity.
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Shortest Augmenting Path
First Lemma:

The length of the shortest augmenting path never decreases.

ñ After an augmentation the following changes are done in

Gf .

ñ Some edges of the chosen path may be deleted (bottleneck

edges).

ñ Back edges are added to all edges that don’t have back

edges so far.

These changes cannot decrease the distance between s and t.

Gf
LG

s

2

3

4

5 t

10

0
6

2

101
09

2

0

90
09

101
09

6

0
10

0

4
0

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of

the shortest augmenting path strictly increases.

Let EL denote the set of edges in graph LG at the beginning of a

round when the distance between s and t is k.

An s-t path in Gf that does use edges not in EL has length larger

than k, even when considering edges added to Gf during the

round.

In each augmentation one edge is deleted from EL.

Gf
EL

s

2

3

4

5 t

10

0
6

2

101
09

2

0

90
09

101
09

6

0
10

0

4
0

Shortest Augmenting Paths

Theorem 60

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 61 (without proof)

There exist networks with m = Θ(n2) that require O(mn)
augmentations, when we restrict ourselves to only augment

along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow.

EADS 12.2 Shortest Augmenting Paths

© Ernst Mayr, Harald Räcke 459



Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve

(asymptotically) on the number of augmentations.

However, we can improve the running time to O(mn2) by

improving the running time for finding an augmenting path

(currently we assume O(m) per augmentation for this).
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Shortest Augmenting Paths

We maintain a subset EL of the edges of Gf with the guarantee

that a shortest s-t path using only edges from EL is a shortest

augmenting path.

With each augmentation some edges are deleted from EL.

When EL does not contain an s-t path anymore the distance

between s and t strictly increases.

Note that EL is not the set of edges of the level graph but a

subset of level-graph edges.
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Suppose that the initial distance between s and t in Gf is k.

EL is initialized as the level graph LG.

Perform a DFS search to find a path from s to t using edges from

EL.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

You can delete incoming edges of v from EL.
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Let a phase of the algorithm be defined by the time between two

augmentations during which the distance between s and t
strictly increases.

Initializing EL for the phase takes time O(m).

The total cost for searching for augmenting paths during a

phase is at most O(mn), since every search (successful (i.e.,

reaching t) or unsuccessful) decreases the number of edges in

EL and takes time O(n).

The total cost for performing an augmentation during a phase is

only O(n). For every edge in the augmenting path one has to

update the residual graph Gf and has to check whether the edge

is still in EL for the next search.

There are at most n phases. Hence, total cost is O(mn2).
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How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.
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Capacity Scaling
Intuition:

ñ Choosing a path with the highest bottleneck increases the

flow as much as possible in a single step.

ñ Don’t worry about finding the exact bottleneck.

ñ Maintain scaling parameter ∆.

ñ Gf (∆) is a sub-graph of the residual graph Gf that contains

only edges with capacity at least ∆.

Gf Gf (99)

s

1

2

t s

1

2

t

115

0

133
0

870

202

0

1

0

115

133
202

EADS 12.3 Capacity Scaling

© Ernst Mayr, Harald Räcke 465

Capacity Scaling

Algorithm 45 maxflow(G, s, t, c)
1: foreach e ∈ E do fe ← 0;

2: ∆← 2dlog2 Ce

3: while ∆ ≥ 1 do

4: Gf (∆)← ∆-residual graph

5: while there is augmenting path P in Gf (∆) do

6: f ← augment(f , c, P)
7: update(Gf (∆))
8: ∆← ∆/2
9: return f
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Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting

paths anymore

ñ this means we have a maximum flow.
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Capacity Scaling

Lemma 62

There are dlogCe iterations over ∆.

Proof: obvious.

Lemma 63

Let f be the flow at the end of a ∆-phase. Then the maximum

flow is smaller than val(f )+m∆.

Proof: less obvious, but simple:

ñ There must exist an s-t cut in Gf (∆) of zero capacity.

ñ In Gf this cut can have capacity at most m∆.

ñ This gives me an upper bound on the flow that I can still

add.
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Capacity Scaling

Lemma 64

There are at most 2m augmentations per scaling-phase.

Proof:

ñ Let f be the flow at the end of the previous phase.

ñ val(f∗) ≤ val(f )+ 2m∆
ñ Each augmentation increases flow by ∆.

Theorem 65

We need O(m logC) augmentations. The algorithm can be

implemented in time O(m2 logC).
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Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃
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Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃
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Maxflow Formulation
ñ Input: undirected, bipartite graph G = (L] R ] {s, t}, E′).
ñ Direct all edges from L to R.
ñ Add source s and connect it to all nodes on the left.
ñ Add t and connect all nodes on the right to t.
ñ All edges have unit capacity.

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃
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Proof

Max cardinality matching in G ≤ value of maxflow in G′

ñ Given a maximum matching M of cardinality k.

ñ Consider flow f that sends one unit along each of k paths.

ñ f is a flow and has cardinality k.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃
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Proof
Max cardinality matching in G ≥ value of maxflow in G′

ñ Let f be a maxflow in G′ of value k
ñ Integrality theorem ⇒ k integral; we can assume f is 0/1.

ñ Consider M= set of edges from L to R with f(e) = 1.

ñ Each node in L and R participates in at most one edge in M.

ñ |M| = k, as the flow must use at least k middle edges.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃
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13.1 Matching

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
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Baseball Elimination

team wins losses remaining games

i wi `i Atl Phi NY Mon

Atlanta 83 71 − 1 6 1
Philadelphia 80 79 1 − 0 2
New York 78 78 6 0 − 0
Montreal 77 82 1 2 0 −

Which team can end the season with most wins?

ñ Montreal is eliminated, since even after winning all remaining
games there are only 80 wins.

ñ But also Philadelphia is eliminated. Why?
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Baseball Elimination

Formal definition of the problem:

ñ Given a set S of teams, and one specific team z ∈ S.

ñ Team x has already won wx games.

ñ Team x still has to play team y, rxy times.

ñ Does team z still have a chance to finish with the most

number of wins.
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Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still

obtain.

s t

1

2

4

5

1-2

1-4

1-5

2-4

2-5

4-5

r12

r14

r15

r24

r25
r
45

M − w
1

M − w2

M − w4

M
− w

5

∞

Idea. Distribute the results of remaining games in such a way

that no team gets too many wins.
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Certificate of Elimination

Let T ⊆ S be a subset of teams. Define

w(T) :=
∑

i∈T
wi, r (T) :=

∑

i,j∈T ,i<j
rij

If w(T)+r(T)|T | > M then one of the teams in T will have more than

M wins in the end. A team that can win at most M games is

therefore eliminated.

wins of
teams in T

remaining games
among teams in T
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Theorem 66

A team z is eliminated if and only if the flow network for z does

not allow a flow of value
∑
ij∈S\{z},i<j rij.

Proof (⇐)

ñ Consider the mincut A in the flow network. Let T be the set

of team-nodes in A.

ñ If for a node x-y not both team-nodes x and y are in T ,

then x-y ∉ A as otw. the cut would cut an infinite capacity

edge.

ñ We don’t find a flow that saturates all source edges:

r(S \ {z}) > cap(A,V \A)
≥

∑

i<j: i∉T∨j∉T
rij +

∑

i∈T
(M −wi)

≥ r(S \ {z})− r(T)+ |T |M −w(T)

ñ This gives M < (w(T)+ r(T))/|T |, i.e., z is eliminated.

Baseball Elimination

Proof (⇒)

ñ Suppose we have a flow that saturates all source edges.

ñ We can assume that this flow is integral.

ñ For every pairing x-y it defines how many games team x
and team y should win.

ñ The flow leaving the team-node x can be interpreted as the

additional number of wins that team x will obtain.

ñ This is less than M −wx because of capacity constraints.

ñ Hence, we found a set of results for the remaining games,

such that no team obtains more than M wins in total.

ñ Hence, team z is not eliminated.
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Project Selection

Project selection problem:

ñ Set P of possible projects. Project v has an associated profit

pv (can be positive or negative).

ñ Some projects have requirements (taking course EA2

requires course EA1).

ñ Dependencies are modelled in a graph. Edge (u,v) means

“can’t do project u without also doing project v.”

ñ A subset A of projects is feasible if the prerequisites of

every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.
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Project Selection

The prerequisite graph:

ñ {x,a, z} is a feasible subset.

ñ {x,a} is infeasible.

z

a x

z

a x
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Project Selection
Mincut formulation:

ñ Edges in the prerequisite graph get infinite capacity.

ñ Add edge (s, v) with capacity pv for nodes v with positive

profit.

ñ Create edge (v, t) with capacity −pv for nodes v with

negative profit.

prerequisite graph

s t

u z

v w

a x

∞

pu

pv

pa

−pz

−pw

−px
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Theorem 67

A is a mincut if A \ {s} is the optimal set of projects.

Proof.

ñ A is feasible because of capacity infinity edges.
ñ cap(A,V \A) =

∑

v∈Ā:pv>0

pv +
∑

v∈A:pv<0

(−pv)

=
∑

v :pv>0

pv −
∑

v∈A
pv

prerequisite graph

s t

u z

v w

a x

∞

pu

pv

pa

−pz

−pw

−px

∑

v∈Ā:pv>0

pv
∑

v∈Ā:pv>0

pv

For the formula we
define ps := 0.

The step follows by
adding

∑
v∈A:pv>0 pv−∑

v∈A:pv>0 pv = 0.

Note that minimizing
the capacity of the cut
(A,V \A) corresponds
to maximizing profits
of projects in A.

Preflows

Definition 68

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑

e∈out(v)
f(e)≤

∑

e∈into(v)
f(e) .
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Preflows

Example 69

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

0|9

0|15

0|4

0|8

11|30

1|6

0|15

0|15

0|10

0|10

0|10

A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an

active node.
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Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges in the residual graph Gf (only

non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.
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Preflows

G

Gf

s

2

3

4

5 t

s

2

3

4

5 t

6 0

0 0

0 0

6 0

20|0

10|0

0|0

0|0

20|20 0|8

0|8

0|2

0|910|10

0|6 0|5

0|4

0

20
8

0

8
0

2

0

9
0

0
10

6

0 5
0

4
0
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Preflows

Lemma 70

A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of

the nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B

in the residual graph Gf ; this means that (A, B) is a

saturated cut.

Lemma 71

A flow that has a valid labelling is a maximum flow.
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Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.
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Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is

admissable if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t.

labelling `).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissable arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ non-saturating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissable arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissable. Now: `(u) ≤ `(w)+ 1.
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Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water than this would be natural).

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.
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Reminder

ñ In a preflow nodes may not fulfill conserveration constraints

but a node may have more incoming flow than outgoing

flow.

ñ Such a node is called active.

ñ A labelling is valid if for every edge (u,v) in the residual

graph `(u) ≤ `(v)+ 1.

ñ An arc (u,v) in residual graph is admissable if

`(u) = `(v)+ 1.

ñ A saturation push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

ñ A non-saturating push along e = (u,v) pushes a flow of

f(u), where f(u) is the excess flow of u. This makes u
inactive.
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Push Relabel Algorithms

Algorithm 46 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.
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Preflow Push Algorithm

Animation for push relabel

algorithms is only available in the

lecture version of the slides.
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Analysis

Lemma 72

An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.
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Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑

b∈B
f(b)

=
∑

b∈B

( ∑

v∈V
f(v, b)−

∑

v∈V
f(b,v)

)

=
∑

b∈B

( ∑

v∈A
f(v, b)+

∑

v∈B
f(v, b)−

∑

v∈A
f(b,v)−

∑

v∈B
f(b,v)

)

=
∑

b∈B

∑

v∈A
f(v, b)−

∑

b∈B

∑

v∈A
f(b,v)+

∑

b∈B

∑

v∈B
f(v, b)−

∑

b∈B

∑

v∈B
f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.
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Analysis

Lemma 73

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label

of the source is n.

Lemma 74

There are only O(n2) relabel operations.
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Analysis

Lemma 75

The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is

required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissable edges.

ñ For a push from v to u the edge (v,u) must become

admissable. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).

Lemma 76

The number of non-saturating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f ) =∑active nodesv `(v)
ñ A saturating push increases Φ by ≤ 2n (when the target

node becomes active it may contribute at most 2n to the

sum).

ñ A relabel increases Φ by at most 1.

ñ A non-saturating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#non-saturating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .



Analysis

Theorem 77

There is an implementation of the generic push relabel

algorithm with running time O(n2m).

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 504

Analysis

Proof:

For every node maintain a list of admissable edges starting at

that node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissable

ñ check for all incoming edges if they become non-admissable
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Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in

the residual graph Gf ). Then we use the discharge-operation:

Algorithm 47 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissable then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value

between consecutive calls to discharge.

Lemma 78

If v = null in Line 3, then there is no

outgoing admissable edge from u.

Proof.

ñ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissable.

ñ The only thing that could make the edge admissable again

would be a relabel at u.

ñ If we reach the end of the list (v = null) all edges are not

admissable.

This shows that discharge(u) is correct, and that we can

perform a relabel in line 4.

In order for e to become admissable the
other end-point say v has to push flow
to u (so that the edge (u,v) re-appears
in the residual graph). For this the label
of v needs to be larger than the label of
u. Then in order to make (u,v) admiss-
able the label of u has to increase.
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14.2 Relabel to Front

Algorithm 50 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then // relabel happened

10: move u to the front of L
11: u← u.next
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14.2 Relabel to Front

Lemma 79 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissable edges; this means for an admissable edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.
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Proof:

ñ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissable, which means that
any ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

ñ Maintenance:
1. ñ Pushes do no create any new admissable edges. Therefore, if

discharge() does not relabel u, L is still topologically sorted.
ñ After relabeling, u cannot have admissable incoming edges

as such an edge (x,u) would have had a difference
`(x)− `(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissable edges leaving u that were generated by the
relabeling.

14.2 Relabel to Front

Proof:

ñ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current
u; the discharge(u) operation only terminates when u is
not active anymore.

For the case that we do not relabel, observe that the only
way a predecessor could be active is that we push flow to it
via an admissable arc. However, all admissable arc point to
successors of u.

Note that the invariant means that for u = null we have a

preflow with a valid labelling that does not have active nodes.

This means we have a maximum flow.
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14.2 Relabel to Front

Lemma 80

There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

EADS 14.2 Relabel to Front

© Ernst Mayr, Harald Räcke 512

14.2 Relabel to Front

Lemma 81

The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.
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14.2 Relabel to Front

Note that by definition a saturing push operation

(min{cf (e), f (u)} = cf (e)) can at the same time be a

non-saturating push operation (min{cf (e), f (u)} = f(u)).
Lemma 82

The cost for all saturating push-operations that are not also

non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).
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14.2 Relabel to Front

Lemma 83

The cost for all non-saturating push-operations is only O(n3).

A non-saturating push-operation takes constant time and ends

the current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 84

The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).
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14.3 Highest label

Algorithm 50 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)
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14.3 Highest label

Lemma 85

When using highest label the number of non-saturating pushes is

only O(n3).

A push from a node on level ` can only “activate” nodes on levels

strictly less than `.

This means, after a non-saturating push from u a relabel is

required to make u active again.

Hence, after n non-saturating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most

n(#relabels + 1) = O(n3).

14.3 Highest label

Since a discharge-operation is terminated by a non-saturating

push this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?
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14.3 Highest label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (non-saturating) push was to s or t the list k− 1

must be non-empty (i.e., the search takes constant time).
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14.3 Highest label

Hence, the total time required for searching for active nodes is

at most

O(n3)+n(#non-saturating-pushes-to-s-or-t)

Lemma 86

The number of non-saturating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 87

The push-relabel algorithm with the rule highest-label takes time

O(n3).
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14.3 Highest label

Proof of the Lemma.

ñ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

ñ After a node v (which must have `(v) = n+ 1) made a

non-saturating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before

v can become active again.

ñ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most

once, v can make at most n pushes to the source.

ñ As this holds for every node the total number of pushes to

the source is at most O(n2).
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Mincost Flow

Problem Definition:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

ñ G = (V , E) is a directed graph.

ñ u : E → R+0 ∪ {∞} is the capacity function.

ñ c : E → R is the cost function

(note that c(e) may be negative).

ñ b : V → R,
∑
v∈V b(v) = 0 is a demand function.
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Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

ñ Given a flow network for a standard maxflow problem.
ñ Set b(v) = 0 for every node. Keep the capacity function u

for all edges. Set the cost c(e) for every edge to 0.
ñ Add an edge from t to s with infinite capacity and cost −1.
ñ Then, val(f∗) = − cost(fmin), where f∗ is a maxflow, and

fmin is a mincost-flow.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

ñ Given a flow network for a standard maxflow problem, and

a value k.

ñ Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

ñ Set edge-costs to zero, and keep the capacities.

ñ There exists a maxflow of value k if and only if the

mincost-flow problem is feasible.
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Generalization

Our model:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
∑
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

A more general model?

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;
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Generalization

Differences

ñ Flow along an edge e may have non-zero lower bound `(e).
ñ Flow along e may have negative upper bound u(e).
ñ The demand at a node v may have lower bound a(v) and

upper bound b(v) instead of just lower bound = upper

bound = b(v).
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Reduction I

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set `(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −∑v∈V b(v).
−∑v b(v) is negative; hence r is only sending flow.

v

r

u(e
)=
b(v

)− a
(v)

`(e
) = 0

c(e
) = 0



Reduction II

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either `(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
`(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) ≠ 0 we can transform the graph so that c(e) = 0.
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Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

x

b(x) = b(u)
u v

+
δ−
δ

+δ
δ

−δ

−δ +δ

u(e)= ∞
`(e) = −∞
c(e) = δ ≠ 0

−δ

Additionally we set b(u) = 0.
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Reduction III

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) ≠ −∞:

u v

u v

u(e)=d ≠∞
`(e)=−∞
c(e)=a

u(e)=∞
`(e)=−d
c(e)=−a

Replace the edge by an edge in opposite direction.
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Reduction IV

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) = 0:

u v

u v

u(e)
`(e)=d ≠ −∞
c(e)

u(e)− d
`(e) = 0
c(e)

ū v̄
b(ū) = d b(v̄) = −d

The added edges have infinite capacity and cost c(e)/2.
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Applications

Caterer Problem

ñ She needs to supply ri napkins on N successive days.

ñ She can buy new napkins at p cents each.

ñ She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

ñ She can use a slow laundry that takes k > m days and costs

s cents each.

ñ At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

ñ Minimize cost.
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Residual Graph

The residual graph for a mincost flow is exactly defined as the

residual graph for standard flows, with the only exception that

one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity

z and a cost of −c((u,v)).
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15 Mincost Flow

A circulation in a graph G = (V , E) is a function f : E → R+ that

has an excess flow f(v) = 0 for every node v ∈ V .

A circulation is feasible if it fulfills capacity constraints, i.e.,

f(e) ≤ u(e) for every edge of G.
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Lemma 88

A given flow is a mincost-flow if and only if the corresponding

residual graph Gf does not have a feasible circulation of

negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in

the residual graph.

Then f + g is a feasible flow with cost

cost(f )+ cost(g) < cost(f ). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f∗ be a min-cost flow.

We need to show that the residual graph has a feasible

circulation with negative cost.

Clearly f∗ − f is a circulation of negative cost. One can also

easily see that it is feasible for the residual graph. (after

sending −f in the residual graph (pushing all flow back) we

arrive at the original graph; for this f∗ is clearly feasible)

For previous slide:
g = f∗ − f is obtained by computing ∆(e) = f∗(e)− f(e) for every
edge e = (u,v). If the result is positive set g((u,v)) = ∆(e) and
g((v,u)) = 0. Otherwise set g((u,v)) = 0 and g((v,u)) = −∆(e).
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15 Mincost Flow

Lemma 89

A graph (without zero-capacity edges) has a feasible circulation

of negative cost if and only if it has a negative cycle w.r.t.

edge-weights c : E → R.

Proof.

ñ Suppose that we have a negative cost circulation.

ñ Find directed path only using edges that have non-zero flow.

ñ If this path has negative cost you are done.

ñ Otherwise send flow in opposite direction along the cycle

until the bottleneck edge(s) does not carry any flow.

ñ You still have a circulation with negative cost.

ñ Repeat.
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15 Mincost Flow

Algorithm 51 CycleCanceling(G = (V , E), c,u, b)
1: establish a feasible flow f in G
2: while Gf contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4: δ←min{uf (e) | e ∈ Z}
5: augment δ units along Z and update Gf
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How do we find the initial feasible flow?

x1

x2

x3

x4

x5

x6

x7

ts −b(x1)−b(x1)
−b(x2)−b(x2)

−b(x3)
−b(x3)

b(x4)b(x4)

b(x5)b(x5)

b(x6)
b(x6)

b(x7)b(x7)

ñ Connect new node s to all nodes with negative b(v)-value.

ñ Connect nodes with positive b(v)-value to a new node t.
ñ There exist a feasible flow in the original graph iff in the

resulting graph there exists an s-t flow of value

∑

v :b(v)<0

(−b(v)) =
∑

v :b(v)>0

b(v) .

15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow

Lemma 90

The improving cycle algorithm runs in time O(n2m2CU), for

integer capacities and costs, when for all edges e, |c(e)| ≤ C and

|u(e)| ≤ U .

ñ Running time of Bellman-Ford is O(mn).
ñ Pushing flow along the cycle can be done in time O(n).
ñ Each iteration decreases the total cost by at least 1.

ñ The true optimum cost must lie in the interval

[−mCU, . . . ,+mCU].

Note that this lemma is weak since it does not allow for edges

with infinite capacity.
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15 Mincost Flow

A general mincost flow problem is of the following form:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

Lemma 91 (without proof)

A general mincost flow problem can be solved in polynomial

time.
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Part V

Matchings

EADS
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Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality



Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃
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Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality
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Bipartite Matching

ñ A matching M is perfect if it is of cardinality |M| = |V |/2.

ñ For a bipartite graph G = (L] R,E) this means

|M| = |L| = |R| = n.
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17 Bipartite Matching via Flows
ñ Input: undirected, bipartite graph G = (L] R ] {s, t}, E′).
ñ Direct all edges from L to R.

ñ Add source s and connect it to all nodes on the left.

ñ Add t and connect all nodes on the right to t.
ñ All edges have unit capacity.

s t

1
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4

5
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Proof

Max cardinality matching in G ≤ value of maxflow in G′

ñ Given a maximum matching M of cardinality k.

ñ Consider flow f that sends one unit along each of k paths.

ñ f is a flow and has cardinality k.

s t
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5L R
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Proof

Max cardinality matching in G ≥ value of maxflow in G′

ñ Let f be a maxflow in G′ of value k
ñ Integrality theorem ⇒ k integral; we can assume f is 0/1.

ñ Consider M= set of edges from L to R with f(e) = 1.

ñ Each node in L and R participates in at most one edge in M.

ñ |M| = k, as the flow must use at least k middle edges.

s t
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17 Bipartite Matching via Flows

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
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18 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 92

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.
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Augmenting Paths in Action
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18 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because

we could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.
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18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 93

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

The above theorem allows for an easier implementation of an augment-
ing path algorithm. Once we checked for augmenting paths starting
from u we don’t have to check for such paths in future rounds.
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18 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P′

P

P1

P′1
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How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs
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Algorithm 52 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to m do parent[i′]← 0
7: Q ← �; Q. append(r); aug ← false;
8: while aug = false and Q ≠ � do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]); The lecture version of the slides

contains a step-by-step explana-
tion of the algorithm.

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}

19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

ñ Input: undirected, bipartite graph G = L∪ R,E.

ñ an edge e = (`, r) has weight we ≥ 0

ñ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

ñ assume that |L| = |R| = n
ñ assume that there is an edge between every pair of nodes

(`, r) ∈ V × V
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Weighted Bipartite Matching

Theorem 94 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.
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19 Weighted Bipartite Matching

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

S

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.
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Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ≥ 0

denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights

in the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains

edges that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.
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Algorithm Outline

Reason:

ñ The weight of your matching M∗ is

∑

(u,v)∈M∗
w(u,v) =

∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

ñ Any other matching M has

∑

(u,v)∈M
w(u,v) ≤

∑

(u,v)∈M
(xu + xv) ≤

∑
v
xv .
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L,

with |Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).
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Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.
L R

S

Γ(S)

−δ

+δ
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Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1 δ = 1

5
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4

2
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0
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0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1

2

5

3

3
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Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of

S by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because

all its edges either go between Γ(S) and S or between L− S
and R − Γ(S).

ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.
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Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.

EADS 19 Weighted Bipartite Matching

© Ernst Mayr, Harald Räcke 573

How to find an augmenting path?

Construct an alternating tree.

u

y
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Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in

the tight subgraph (because for a perfect matching we need

to find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.
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Analysis

ñ The current matching does not have any edges from Vodd to

outside of L \ Veven (edges that may possibly be deleted by

changing weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we otain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).
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A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.
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Analysis

Lemma 95

Given a matching M and a maximal matching M∗ there exist

|M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting paths.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in

this graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a blue edge. These are

augmenting paths w.r.t. M.
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Analysis

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 96

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.
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Analysis

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.
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Analysis

Lemma 97

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows

from the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.
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Analysis

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains

|M∗| − |M| vertex-disjoint augmenting paths. Each of these

paths contains at least ` + 1 vertices. Hence, there can be at

most |V |
`+1 of them.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 582

Analysis

Lemma 98

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.
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Analysis

Lemma 99

One phase of the Hopcroft-Karp algorithm can be implemented

in time O(m).

ñ Do a breadth first search starting at all free vertices in the

left side L.

(alternatively add a super-startnode; connect it to all free vertices

in L and start breadth first search from there)

ñ The search stops when reaching a free vertex. However, the

current level of the BFS tree is still finished in order to find a

set F of free vertices (on the right side) that can be reached

via shortest augmenting paths.
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Analysis
ñ Then a maximal set of shortest path from the leftmost layer

of the tree construction to nodes in F needs to be

computed.
ñ Any such path must visit the layers of the BFS-tree from left

to right.
ñ To go from an odd layer to an even layer it must use a

matching edge.
ñ To go from an even layer to an odd layer edge it can use

edges in the BFS-tree or edges that have been ignored

during BFS-tree construction.
ñ We direct all edges btw. an even node in some layer ` to an

odd node in layer ` + 1 from left to right.
ñ A DFS search in the resulting graph gives us a maximal set

of vertex disjoint path from left to right in the resulting

graph.
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s

How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w path is called
the stem of the blossom.
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Flowers and Blossoms

Definition 100

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base

of the blossom.

EADS 21 Maximum Matching in General Graphs

© Ernst Mayr, Harald Räcke 588



Flowers and Blossoms
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Flowers and Blossoms

Properties:

1. A stem spans 2` + 1 nodes and contains ` matched edges

for some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).

EADS 21 Maximum Matching in General Graphs

© Ernst Mayr, Harald Räcke 590

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.
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Flowers and Blossoms
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Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is

connected to all vertices in V \ B that had at least one edge

to a vertex from B.
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Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become

matching edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y
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Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become

matching edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.
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Example: Blossom Algorithm

Animation of Blossom Shrinking

algorithm is only available in the

lecture version of the slides.
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Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be

the root, B the blossom, and w the base. Let graph G′ = G/B
with pseudonode b. Let M′ be the matching in the contracted

graph.

Lemma 101

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

EADS 21 Maximum Matching in General Graphs

© Ernst Mayr, Harald Räcke 596

Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q

EADS 21 Maximum Matching in General Graphs

© Ernst Mayr, Harald Räcke 597

Correctness

ñ After the expansion ` must be incident to some node in the

blossom. Let this node be k.

ñ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

ñ P1 ◦ (i,w) ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

ñ If k = w then P1 ◦ (i,w) ◦ (w, `) ◦ P3 is an alternating path.
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Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .
P3

b ` q

P3

w

k ` q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.
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Correctness

Lemma 102

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r ) to q w.r.t. M′.
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Correctness

Proof.

ñ If P does not contain a node from B there is nothing to

prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.
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Correctness

Illustration for Case 1:

r

i

j q

b j q
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Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.
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Algorithm 54 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ � do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

The lecture version
of the slides has a
step by step expla-
nation.

Search for an augmenting path
starting at r .

Algorithm 55 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

The lecture version
of the slides has a
step by step expla-
nation.

Examine the neighbours of a node i

Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Contract blossom identified by
nodes i and j

Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Get all nodes of the blossom.

Time: O(m)



Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Identify all neighbours of b.

Time: O(m) (how?)

Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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b will be an even node, and it has
unexamined neighbours.

Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Every node that was adjacent to a node
in B is now adjacent to b

Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Only for making a blossom
expansion easier.



Algorithm 56 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction

reduces the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n
of them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .
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Example: Blossom Algorithm

Animation of Blossom Shrinking

algorithm is only available in the

lecture version of the slides.
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