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1 Planar graph coloring

1.1 Problem

In this section, we consider planar graph coloring. This problem is relevant for applica-
tions such as:

• Can a map be colored with only 4 colors, such that neighboring regions have
different colors?

• How does one have to assign phone/radio frequencies to antennas to use as few
frequencies as possible?

• Sudoku.

A coloring of an undirected graph G = (V,E) assigns to each vertex v (edge e, face
or region f) from V (E, F ) a natural number c(v) ∈ N (c(e), c(f)), called color. A
coloring is feasible if two neighboring vertices (edges, faces) are assigned different colors.
One distinguishes between vertex coloring, edge coloring and face coloring. A coloring
using k different colors is called k-coloring. γ(G) = min{k : G is k-colorable} is called
chromatic number.

In general, the decision problem regarding the k-colorability of a given graph G is
NP-hard.

Definition 1 (planar graph) A graph G is planar, if the vertices can be embedded
into the plane R2 such that edges can only cross each other at a vertex.

We consider vertex coloring of a planar graph G. The following result will be helpful:

Theorem 2 (Euler’s formula) Given a connected planar graph G, let n, e, f be the
number of vertices, edges, and faces, respectively. Then

n− e+ f = 2.

Proof: Proof by induction over n.
Let n = 1. Then G contains only loops. If e = 0, then there is exactly one face. If e > 0,
then each loop divides a face into two faces. Thus, the induction hypothesis is true for
n = 1 and e ≥ 0.

Let n > 1. If G is connected, there exists an edge which is not a loop. Then this edge
can be “collapsed” resulting in a graph G′ containing n′ vertices, e′ edges and f ′ faces.
By collapsing the edge, the number of faces does not change. However, the number of
vertices and the number edges each decrease by 1. Using the hypothesis yields

n− e+ f = n′ + 1− (e′ + 1) + f = 2.

ut
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Remark 3 Euler’s formula only works for connected graphs. However, there is a general
formula for planar graphs with k connected components:

n− e+ f = k + 1.

Theorem 4 (Five color theorem (Heawood)) Every planar graph is 5-colorable.

Proof: The case |V | ≤ 5 is trivial.
Now let G = (V,E) be a minimal non-5-colorable planar graph. Since G is planar, it
can be triangulated, and we have e ≤ 3f

2
. Substituting this to Euler’s formula we get

e ≤ 3n− 6. The average degree of a vertex in G can be computed as

a =
2e

n
≤ 2(3n− 6)

n
=

6n− 12

6
< 6.

Therefore there is a vertex w ∈ V with deg(w) ≤ 5. And because a vertex with degree
4 can always be colored with a color that is not used by its neighbors (in contradiction
to the minimality), this vertex must have degree 5. Let v ∈ V be such a vertex.

Because of the minimality of G, G\{v} is 5-colorable. So, let f : V \{v} → {1, . . . , 5}
be a 5-coloring of G\{v}. Because G is not 5-colorable, every vertex in the neighborhood
N(v) of v is assigned a different color. We color the neighbors v1, . . . , v5 clockwise with
the colors 1, . . . , 5.

Let G1,3 be the subgraph of G containing all vertices which are colored with the
colors 1 and 3. Changing the colors of the two components in this subgraph obtains
another 5-coloring of G \ {v}. If v1 and v3 lie in different components, we can change
the coloring in that containing v1 such that v1 is now assigned the color 3 and G is
5-colorable. Thus, v1 and v3 must lie in the same component.

Let P1,3 be the path in G1,3, starting at v1 and ending at v3. Consider the cycle
defined by the vertices in P1,3 and v. This cycle divides the vertices v2 and v4. Thus, the
path P2,4 must cross P1,3. As G is planar, the crossing must be at a vertex v ∈ V . But
P1,3 and P2,4 do not share any color, thus the crossing cannot be at a vertex, which is a
contradiction. ut

Theorem 5 (Four color theorem) Every planar graph is 4-colorable.

Remark: Not until 1977, Ken Appel and Wolfgang Haken were able to find a proof.
This proof reduced the number of problematic cases from infinitely many to 1936 (and
in a later version even to 1476), which were checked individually by a computer. In 1996,
Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas found a modified
proof reducing the cases to 633. But these had to be checked by a computer, as well.

1.2 Algorithm

Consider the greedy approach given in figure 1:
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func greedy coloring 1((V,E))

∀v ∈ V do
color v with the next free color

od

Abbildung 1: Greedy coloring 1

It is obvious that this algorithm finds a feasible coloring of G, in time O(|V |+ |E|).
But this coloring can become arbitrarily bad, see the following example: Although 2
colors are sufficient the algorithm uses 6 colors.

m m m m m m1 2 3 4 5 6

The algorithm in figure 1 can be improved by a simple modification, see the algorithm
in figure 2.

func greedy coloring 2((V,E))

∀v ∈ V do
c[v] = min{k ∈ N | k 6= c[w] ∀e = {v, w}}

od

Abbildung 2: Greedy coloring 2

In general, the algorithm in figure 2 uses less colors than the algorithm in figure 1,
requiring the same time O(|V | + |E|). In the example above, it uses only 2 colors. But
still, the coloring can become arbitrarily bad.

Lemma 6 Every graph G of maximal degree d can be colored with d+ 1 colors.

Lemma 7 For every graph G = (V,E) there exists an ordering σ of the vertices v ∈ V
such that the greedy algorithm in figure 2 assigns an optimal coloring.

Unfortunately, we cannot determine an optimal ordering in advance. In some cases,
it is sufficient to determine a “good” coloring of G, and thus a “good” ordering of the
vertices. If we consider a vertex v ∈ V , which we would like to color, then the colors c[vi]
of its neighbors in N(v) are “forbidden”. Thus, for a vertex with a big degree, many
colors are “forbidden”. Vertices with lower degree allow for a more flexible choice of
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colors. Therefore it is intuitive to color the other vertices (i.e. vertices with high degree)
with higher priority.

Because of this, we can come up with algorithm 3. This algorithm generally computes
a “good” coloring of a graph G in time O(|V | log |V |+ |E|):

func greedy coloring 3((V,E))

Sort the vertices v ∈ V according to non-increasing degree deg(v)→ σ[.]

for i = 1 to |σ| do
c[σ[i]] = min{k ∈ N | k 6= c[w] ∀e = {σ[i], w}}

od

Abbildung 3: Greedy coloring 3
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