
Praktical Course: Algorithm Design

1 LEDA

LEDA (Library of Efficient Data types and Algorithms) is a library of C++-classes which
was developed at the MPI in Saarbrücken, and which provides a variety of higher data
structures and tools for visualization and animation. Since February 2001 Algorithmic
Solutions Software GmbH is the sole distributor of LEDA. By now, a royalty has also to
be paid for the research edition. More to LEDA can be found in the internet:

http://www.algorithmic-solutions.com/

In this practical course we will use LEDA 5.2 and the compiler g++ (version 4.3.x).

2 Installations

LEDA can be found at /usr/local/LEDA on the LINUX computers of the chair. The
main directory that contains the files which have to be included is /usr/local/LEDA/incl/LEDA.
To work with LEDA, the following environment variables must possibly be set:

bash / ksh:

export LEDAROOT=/usr/local/LEDA

export LD LIBRARY PATH=$LEDAROOT:$LD LIBRARY PATH

tcsh / csh:

setenv LEDAROOT /usr/local/LEDA

setenv LD LIBRARY PATH ${LEDAROOT}:${LD LIBRARY PATH}

3 Usage

To compile and link a C++-program using LEDA the compiler must be given the di-
rectory with the LEDA-includes and the LEDA-libraries. You can find an appropriate
makefile and an example program dfs.cpp (along with the associated control.h) on
the website of the course.

After copying the three files to a separate directory you should be able to compi-
le dfs.cpp by make dfs. A program foo.cpp written by yourself can analogously be
compiled by calling make foo. As the course progresses test graphs will be provided as
inputs for your LEDA-programs on the website of the course. Those should be copied
into the directory where your programs are started (in order to load them more simply
using the function “Load Graph”).

If you want to use a LEDA-class foo which is located in the subdirectory bar (i.e.,
the path is /usr/local/LEDA/incl/LEDA/bar/foo.h) for your program, then you just
have to incorporate the corresponding header by #include <LEDA/bar/foo.h>. Some
of the classes we will use are:

1



• string (<LEDA/core/string.h>): Similar to char * of C++ but has more featu-
res

• random source (<LEDA/core/random source.h>): Generation of random numbers

• stack (<LEDA/core/stack.h>)

• queue (<LEDA/core/queue.h>)

• list (<LEDA/core/list.h>)

• set (<LEDA/core/set.h>): Set of elements

• partition (<LEDA/core/partition.h>): Partition of a set

• map (<LEDA/core/map.h>): Mapping from one type to another

• p queue (<LEDA/core/p queue.h>): Priority queue

• graph (<LEDA/graph/graph.h>): LEDA-Graph

• node array (<LEDA/graph/node array.h>): Assignment of values to nodes

• edge array (<LEDA/graph/edge array.h>): Assignment of values to edges

• node map (<LEDA/graph/node map.h>): Dynamic variation of node array

• edge map (<LEDA/graph/edge map.h>): Dynamic variation of edge array

• node set (<LEDA/graph/node set.h>): Set of nodes

• edge set (<LEDA/graph/edge set.h>): Set of edges

• node partition (<LEDA/graph/node partition.h>): Partition of the node set of
a graph

• node pq (<LEDA/graph/node pq.h>): Priority queue of nodes of a graph

• color (<LEDA/graphics/color.h>): Definitions of colors

• window (<LEDA/graphics/window.h>): Screen window

• GraphWin (<LEDA/graphics/graphwin.h>): Display of graphs on the screen, and
user interface

More in-depth description of these classes can be found, e.g., in the online-manual-
viewer. Furthermore, LEDA/system/basic.h provides several useful functions which can
be looked up in the section “misc” of the manual.

We illustrate a queue of LEDA as simple example. The expression
#include <LEDA/core/queue.h> provides the template-type queue<T> where T is an
arbitrary type and specifies the type of the elements of the queue. For instance,

2



queue<node> Q declares a queue of nodes. We can append nodes to the queue by
Q.append(v), and pop a node from the queue by v=Q.pop(). The expression Q.empty()

tests a queue for emptyness.
The most complex class used in the practical couse probably is GraphWin which is

used to display the graph on the screen. We will use this class to let the user input or
load a graph which is then used to visualize how the algorithm works as well as the result
of the algorithm. To this end, we can use a variety of functions for the modification of
the visualization, and of the labels of nodes and edges. Note that GraphWin-graphs are
always directed. Undirected graphs are realized by visualizing the edges as undirected
edges. We can iterate over all incident edges of a node by forall inout edges(e,v)

(see the example program dfs.cpp).
The include-file control.h used by dfs.cpp realizes a small control window which

must be made visible by create control() at the beginning of the program. At the end
it should be destroyed by destroy control(). The control window realizes some kind
of “remote control” which we can use to control the animation process (Stop, Continue,
etc.) if the program uses the function control wait() for delays.

4 Assignments

For solving the assignment sheets you can use (most of) the computers of the chair
located in room 03.09.034. If you want to use your own computer make sure to use
version 5.2 or LEDA. In any case, we must be able to compile your programs using
the Makefile of the website and the computers of the chair. Please use the respective
names proposed in the assignment sheets for your programs (for example bfs for the
first program of the first sheet).

You will work in teams of two persons. It is recommended to work and implement the
programs together in close collaboration, and not to partition the different assignments
amongst you.

We emphasize that you must provide your own solution and not use programs of
other groups as “template”. If you have problems with the implementation don’t use
some solution of another group. (Of course, you are allowed and encouraged to discuss
ways of implementing certain aspects of your programs with other groups but you are
not allowed to share source code.) Instead, you can talk to your respective advisor in
the consultation-hour if you have matters with understanding or the implementation.

5 Submission of solutions

You must submit your solution until the respective due date (normally a week after the
release of the assignment sheet). To this end, send an email with the subject

Algoprak WS2013 Gruppe x Blatt y

3



and your programs as the attachment to algoprak@in.tum.de where x is your group
number and y is the number of the assignment sheet. The programs should have the
respective names proposed in the assignment sheet.

We review the solutions and test them on correctness using the test inputs provided
on the website as well as additional test data. Furthermore, we will test the solutions
on efficient implementation. We will judge your submissions either “OK” or “not OK”.
A submission will be judged “OK” if it meets the following criteria:

• Correctness of the calculated results (using the given test inputs and our additional
inputs)

• Efficiency of the implementation (avoidance of inefficient constructs such that the
Worst-Case running time is met when removing the animation procedures)

• Quality of the animation (the algorithm should be vividly visualized)

• Readability of the source code (sufficient useful comments which help the reader
understanding the source code)

Submissions that cannot be judged “OK” will be sent back to the authors with com-
ments on the bugs or deficits. In this case, the authors are allowed to rework their solution
and to submit a revised version within at most one additional week. This opportunity
does not apply to the case of detected plagiarism. The deadlines are firm and cannot be
extended.

6 Certificates

Each team member obtains a certifcate if

• all assignments were treated,

• all except for two of the submissions of the team were jugded “OK”, and

• the oral examination at the end of the semester was passed.

Within the oral exam at the end of semester, we expect every student to be able to
answer questions to all assignments of the course. This also includes the code of her/his
group.

7 F.A.Q.

1. Q: Should I use p queue or node pq for nodes?
A: node pq

4



2. Q: I get a segmentation fault error, what’s wrong?
A: Often, the reason for this error is that the data structure representing the graph
is not synchronous with the visual representation. Usually, this can be repaired by
adding the command gw.update graph(); (where gw is the GraphWin object) at
the respective position in the code (after modifying the graph or before calling
commands that use the graphical representation like, e.g., the edit mode).

3. Q: Why shouldn’t I use copy constructors?
A: They do not work the same way as in Java, so use references or pointers instead.

4. Q: Why shouldn’t I use 2D arrays?
A: Just don’t!

8 Example program: dfs.cpp

5


