Complexity Theory

Due date: May 28, 2013 before class!

Problem 1 (10 Points)

- (i) Assume $A \preceq_m^p B$. Show that then also $\overline{A} \preceq_m^p \overline{B}$.
- (ii) Show that if a complexity class \mathcal{C} is closed under \leq_m^p , then so is $\operatorname{co}\mathcal{C}$.
- (iii) Show that $co \mathcal{NP}$ is closed under union and intersection.

Problem 2 (10 Points)

- (i) Show that \mathcal{NP} and $co\mathcal{NP}$ both are subsets of the set of languages which are polynomial-time Turing-reducible to SAT.
- (ii) Prove that if \mathcal{NP} was equal to the set of languages which are polynomial-time Turing-reducible to SAT, it would follow that $\mathcal{NP} = co\mathcal{NP}$.

Problem 3 (10 Points)

Recall the construction of a graph G for showing that HAMPATH is \mathcal{NP} -complete (see the textbook for further references). Elaborate the details of the proof by showing the claim

 $G \in \text{HamPath} \implies \varphi \in \text{Sat.}$

(It is done in the textbook; however, the last part misses the details. What you should elaborate is being stated in the textbook as 'It is not hard to see that [...]'.)

Problem 4 (10 Points)

Define the following two covering problems:

- A vertex cover of a graph G = (V, E) is a set of vertices $V' \subseteq V$, where every edge in E is incident to at least one vertex in V'. Let VERTEX COVER = {(G, k) : G has a vertex cover of size at most k}.
- Given a set U, and a family S of subsets of U, a set cover of U is a subfamily of sets $C \subseteq S$ whose union is U.

Let SET COVER = $\{(U, S, k) : U \text{ has a set cover of size at most } k\}$.

Show the following two claims.

- (i) VERTEX COVER is \mathcal{NP} -complete.
- (ii) Set Cover is \mathcal{NP} -complete.

Problem 5 (10 Points)

Define a regular expression over $\{0, 1\}$ as

 $r ::= 0 \mid 1 \mid rr \mid r \mid r.$

The problem REGEXPEQ is about the question whether two languages defined by two different regular expressions are identical. A special case of this is the language REGEXPEQ_{*}, which contains all regular expressions that create the language of all words Σ^* . Show that REGEXPEQ_{*} is co \mathcal{NP} -complete.

Problem 6 (10 Points)

Rewrite the proof of the Time Hierarchy Theorem, but use the whole string x^* as a description of a TM, not just a prefix of x^* .