The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The solution is dual feasible and, hence,

$$\sum_{\mathbf{v}} y_{\mathbf{k}} \leq \operatorname{cost}(\mathbf{x}^*) \leq 0.011$$

where zc^* is an optimum solution to the primal LP.:

The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶
276/443

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
276/443

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Algorithm 1 PrimalDual
1: $y \leftarrow 0$
2: $I \leftarrow \emptyset$
3: while exists $u \notin \bigcup_{i \in I} S_i$ do
4: increase dual variable y_i until constraint for some
new set S_ℓ becomes tight
5: $I \leftarrow I \cup \{\ell\}$

