Algorithm 1 FacilityLocation

1: $C \leftarrow D//$ unassigned clients

2: $k \leftarrow 0$

3: while $C \neq 0$ do

4: $k \leftarrow k + 1$

5: choose $j_k \in C$ that minimizes $v_i^* + C_i^*$

6: choose $i_k \in N(j_k)$ according to probability x_{ij_k} .

7: assign j_k and all unassigned clients in $N^2(j_k)$ to i_k

8: $C \leftarrow C - \{j_k\} - N^2(j_k)$

EADS II © Harald Räcke

19 Facility Location

401

403

Lemma 12 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \leq (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$
,

Total assignment cost:

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ijk}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_{j}^{*} + \sum_{j} 2v_{j}^{*} \le \sum_{j} C_{j}^{*} + 2OPT$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

Lemma 13

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Integer Multicommodity Flows

- ▶ Given s_i - t_i pairs in a graph.
- Connect each pair by a paths such that not too many path use any given edge.

EADS II © Harald Räcke 20.1 Chernoff Bounds

405

407

Theorem 14

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming Solution.

EADS II © Harald Räcke

20.1 Chernoff Bounds

406

Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in P_i : e \in p} x_p^* = \sum_{p : e \in P} x_p^* \le W^*$$

Integer Multicommodity Flows

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

20.1 Chernoff Bounds

409

411

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ▶ While *x* not feasible
 - ▶ Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \qquad x_i \geq 0$$

Dual Formulation:

$$\max \sum_{u \in U} y_u$$
s.t. $\forall i \in \{1, ..., k\}$ $\sum_{u:u \in S_i} y_u \leq w_i$

$$y_u \geq 0$$



21 Primal Dual Revisited

410

Repetition: Primal Dual for Set Cover

Analysis:

▶ For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

► Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$$