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Ellipsoid Method

>

>

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

Compute (smallest)
ellipsoid E’ that
contains K N H.

T

EADS I 9 The Ellipsoid Algorithm =) = =
©Harald Racke



Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke



Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

> REPEAT
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» What if the polytop K is unbounded?
» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a
non-empty polytop?

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke



Definition 3
A mapping f : R" — R™ with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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Definition 4
A ball in R™ with center ¢ and radius 7 is given by

B(c,r) ={x | (x —c)i(x—-c) <7r?}
={x|>(x-0)2/r* =<1}

B(0,1) is called the unit ball.

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke



Definition 5
An affine transformation of the unit ball is called an ellipsoid.
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An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).
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Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L ' (y-t)eB(0,1)}

—{yeR" | (y-DIL VL Y y-—1t)<1}
={yeR" | (y-HiQ Ny -t)<1}

where Q = LL! is an invertible matrix.
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How to Compute the New Ellipsoid
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» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
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How to Compute the New Ellipsoid
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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The Easy Case

» The new center lies on axis x;. Hence,

¢ =tej fort > 0.
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The Easy Case

» The new center lies on axis x1. Hence, ¢’ = teg fort > 0.
» The vectors ey, e,... have to fulﬁlll the ellipsoid constraint
with equality. Hence (e; — é)1Q" "(e; — ¢') = 1.
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The Easy Case

. .ooa,—1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.
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The Easy Case

. .ooa,—1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.

> Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.
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The Easy Case

> The obtain the matrix O’ for our ellipsoid £’ note that £’

is axis-parallel.

Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

The matrix
a 0
- 0O b
L' = _
: . . 0
0O ... 0 b

maps the unit ball (via function f'(x) = L'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.

T
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The Easy Case

>A5Q’:

L

7

L

t oA
" the matrix Q'

~!is of the form
50 0
) 0
0 0 &

T
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The Easy Case

> (e1 — 5')tQ'_1(e1 —¢') =1 gives

» This gives (1 —t)2 = a?.

©Harald Racke
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The Easy Case

. . g Al o .
» For i # 1 the equation (e; — ¢")!Q" (e; — ¢’) = 1 gives

t
1 1
o L
0 b2 0
A .0
: ) :
0 0 ... 0 4= 0
» This gives ;—22 + # =1, and hence
1 t?
p-l e
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The Easy Case

. . g Al o .
» For i # 1 the equation (e; — ¢")!Q" (e; — ¢’) = 1 gives

t

-t 1 —t
1 a 0 0 1
o L
0 b? 0 =1
D 0
: ) :
0 0 0 32 0
» This gives ;—22 + # =1, and hence
1,8,
b2 a? (1-1t)2
P -

EADS Il
©Harald Racke
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The Easy Case

. . g Al .
» For i # 1 the equation (e; — ¢")!Q" (e; — ¢’) = 1 gives

t
-t 1 —t
) 2 0 ... 0 .
0 &
0 b2 0 =1
: .0
: ) :
0 0 ... 0 4= 0
> This gives;—i+#=1,and hence
i—1—£—1— 2 1-2t
b2~ a2 T (1-1H2 (1-1t)?

.
9 The Ellipsoid Algorithm
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Summary

So far we have

a=1-t and b=

1-t
V1 -2t

©Harald Racke
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The Easy Case

We still have many choices for ¢:
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Choose t such that the volume of E’ is minimall!!
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The Easy Case

We still have many choices for ¢:
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The Easy Case

We want to choose t such that the volume of E’ is minimal.
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The Easy Case

We want to choose t such that the volume of E’ is minimal.

Lemma 6
Let L be an affine transformation and K < R™. Then

vol(L(K)) = |det(L)| - vol(K) .
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n-dimensional volume
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.

vol(E") = vol(B(0,1)) - |det(L))] ,

where O’ = 11",
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The Easy Case
» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where Q' = i/1"".

» We have
1
0 0 a 0
1. A
Pt o O b " land L’ =
0 0 3 0 0 b
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The Easy Case
» We want to choose t such that the volume of E’ is minimal.

vol(E") = vol(B(0,1)) - |det(L))] ,

where Q' = i/1"".

» We have
1
0 0 a 0 0
1 - :
n = S . b
Pt o O b and L' =
0 ... 0 % 0 ... 0 b

» Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E")

©Harald Racke
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|

=vol(B(0,1)) - ab™!

=vol(B(0,1)) - (1 =¢) - (

1-t
VI-2t

-
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|

=vol(B(0,1)) - ab™!

=vol(B(0,1)) - (1 =¢) - (

1-t
V1 -2t

a-on"

=vol(B(0,1))

S (VI-2p)nt

-
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The Easy Case

dvol(E")
dt
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The Easy Case

dvol(E")
dt

_i<
S dt

a1-on" )
(V1T =201
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The Easy Case

dvol(E")
dt

_i(
S dt

1
=

1-on )
(V1T =201
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The Easy Case

dvol(E"’)

dt ((\/(17_”)7; 1)

g( 1) -n(1-t)n !

derivative of numerator |

Z‘»—l Q‘“Q-
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The Easy Case

dvol(E"’)
dt

Z‘»—l Q‘“Q-

i

a1-on"
rz)

(( D-n(1-6)" 1.

1-2t)n!

denominator

©Harald Racke
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The Easy Case

dt

z

(V1 =201
(( 1)-n(1-t)"1. 1-2t)n!

dvol(E) _di< (1-o" )
i

n-1)H1-2t)"2

outer derivative

©Harald Racke
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The Easy Case

dt (/ )nl

dvol(E") d (1- t)"
S a ()
=i (( D-n1-0"1 (1-20)"!

N2

1
—m-DW1-20)" 2 (=2
(= DET=20"2 e (-2)
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The Easy Case

dt

(V1T =201
(( 1) -n1-tH" . 1-2t)"1

dvol(E") _dg< (1-t)" )
L

N?
1
~(n-1)H1-20)""2" (=2)-(1-D)"
avi-at
9 The Ellipsoid Algorithm =] =
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The Easy Case

dt (/ )nl

dvol(E") d (1-t)"
S a ()
=i (( D-n1-0"1 (1-20)"!

z

—(n-1)K1-2t)"2. zﬁ (=2)-(1- t)">

1 n— n-—
=W-(\/1—2t) .-t
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The Easy Case

dt

z

dvol(E) _di< (l—t)" )
i

( 20t 1-2t
(( ) -nd-t" . (2!

n-1)H1-2t)"2. 1 (=2)-(1- t)">

21 -2t

1 n— n-—
=yz (i-2t) 5.1 -t

©Harald Racke
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The Easy Case

at /1=26m 1-2t
= (( 1 -n1-pr . (A2t

(- AL (-2) - t)”)
1 n- n-
=W-(\/1—2t) 51—t

dvol(E) _di< (1-o" )
L

z
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The Easy Case

dt (/I-2pm 1-2t
(( 1) - n(d—"T. (1201

(- AL (-2) - t)”)
1 n- n-
=W-(\/1—2t) 51—t

dvol(E) _di< (l—t)" )
L

Z

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke



The Easy Case

dt (/I-2pm 1-2t
(( 1) - n(d—"T. (1201

1-t
~(n- AL %-(—Z)u/rrf)
1 n- n-
=W-(\/1—2t) S.(1-pnt

dvol(E) _di< (l—t)" )
L

Z
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The Easy Case

dvol(E")
dt

- 3t (Gr=1)
d ( )‘ﬂl 1-2t
- L. (( 1) - (87T . (JJT—2r=T

Z

1-t
(n—1)(1—217772 . M (27 - W)

= ﬁ C(W1-20"3 (1 -t

©Harald Racke
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The Easy Case

dt (/I-2pm 1-2t
(( 1) - n(d—"T. (1201

dvol(E) _di< (l—t)" )
L

Z

1-t

= ﬁ S(W1-20)" (1 - !

. ((n— DA-t)-n( - Zt))
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The Easy Case

dt (V=20 1-2t
(( 1) - n(d—"T. (1201

dvol(E) _di< (l—t)" )
L

2

1-t

= ﬁ S(W1-20)" (1 - !
: ((n— (1 -t)-n(l - Zt))

=— - 1—2t)"—3-(1—t)"—1-((n+1)t—1)
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t=—"andb=
n+1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
a=l-t= -7an -2t
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n

n 1-t
a—l—t—n+1andb— =7 =

n2 -1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
a—l—t—n+1andb— =7

To see the equation for b, observe that

bZ

n2 -1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
a—l—t—n+1andb— =7

To see the equation for b, observe that

(1 -t)?

2 _
b® = 1-2t

n2 -1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain
1-t

a=1-t=—"andb=
n

1 1-2t

To see the equation for b, observe that

(1-1)?2 (1—m)2
1-2t

b* =

1_n+1

n2 -1
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The Easy Case

» We obtain the minimum for t = P

» For this value we obtain

b* =

n 1-t n
=1-t= and b =
a n+l T-2t JnZ-1
To see the equation for b, observe that
(1-1)? _ (1_n+1)2 (n+1)2
_ = -1
-2t 11— sy
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
a n+l T-2t JnZ-1
To see the equation for b, observe that
b2 = (1-1)° _ (1_n+1)2 (n+1)2 _ n?
1 - Zt 1 - = L71 nz — 1
n+l n+1
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The Easy Case

vol(E")

Let yn = o1B(0.1)

changes:

; = ab""! be the ratio by which the volume

©Harald Racke
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume
changes:
2 -
2 n 2 n n-1
vi= (1) G 1)

©Harald Racke
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The Easy Case

Let yn = #@:i)) = ab™"! be the ratio by which the volume

changes:

2 2 -1
Yn = (nf 7) <n2‘n— 1>n

1 2
(- 7) U )

n-1
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1

2 2 -1
Yn = (nz 1> <n2n— 1)”
(1

2
1) O )
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1

S
+
p—
S~~—"
no
—~
—
+
S
|
—_
S
+
—
S~—

where we used (1 + x)% < e** forx €e Rand a > 0.
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1
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+
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S~~—"
no
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+
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where we used (1 + x)% < e** forx €e Rand a > 0.

1
This gives y, < e 2m+D),
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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» Use a rotation R~! to rotate the unit ball such that the
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» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q’
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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Our progress is the same:

e_ 2n+1)
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Our progress is the same:

1 vol(E")

e_Z(n+l) >

~ vol(B(0,1))
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1 vol(E')  vol(E)

e 2m+D) > =

~ vol(B(0,1))  vol(E)
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Our progress is the same:

R vol(E") _ Vol(E"A’) _ Vol(R(E:’))
~ vol(B(0,1))  vol(E)  vol(R(E))
_ Vol(E")
"~ vol(E)
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Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e 2m+D)

%

vol(B(0,1)) ~ vol(E)  vol(R(E))
vol(E')  vol(f(E"))
vol(E)  vol(f(E))

‘m EADS I 9 The Ellipsoid Algorithm
©Harald Racke



Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e_ 2(n+1)

%

vol(B(0,1))  vol(E)  vol(R(E))
vol(E")  vol(f(E'))  vol(E')
vol(E) ~ vol(f(E))  vol(E)

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke



Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e 2(m+D)

%

vol(B(0,1))  vol(E)  vol(R(E))
vol(E")  vol(f(E'))  vol(E')
vol(E) ~ vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx +t changes the volume by factor det(L).
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How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;
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The halfspace to be intersected: H = {x | at(x — ¢) < 0};
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
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The halfspace to be intersected: H = {x | at(x — ¢) < 0};
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};
STHH) = {f 1) T al(x —¢) < 0}
={f 'f) la(f(y)-c) <0}
={yla'(f(y)-c) <0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};
STHH) = {f 1) T al(x —¢) < 0}
={f 'f) la(f(y)-c) <0}
={yla'(f(y)-c) <0}

={yla(Ly +c—-c) <0}
={y|(a'l)y <0}

This means a = Lta.
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

_1( Lta ): Lta R-e

—e —_ =
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lta Lta
-1
=—e] ————=R-e1
(IILtaH) ILta|l
Hence,
’ r 1
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lia Lta
R1 — e ~ -2 _R.e
(||Lta||> L7 TlLta !
Hence,
, o 1 1 ILta
7 =R-¢ =R - - - =%
¢ ¢ n+19 T Tl Ltal
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lia Lta
-1
=—e —-———=R-e
(||Lta||> ! ILtal !
Hence,
, o 1 1 ILta
7 =R-¢" =R - - - =7
¢ ¢ n+19 T Tl Ltal

o
Il

"= f@@)=L-¢ +c

= — 1 LLta +c
 m+1|Ltall




The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lia Lta
-1
=—e —-———=R-e
(||Lta||> ! ILtal !
Hence,
, o 1 1 ILta
7 =R-¢" =R - - - =7
¢ ¢ n+19 T Tl Ltal

o
Il

"= f@)=L-¢ +c
1 Lta
= - L +c
n+1 |Ltall

1 Qa

n+1 /atQa




For computing the matrix Q' of the new ellipsoid we assume in
the following that E’, E’ and E’ refer to the ellispoids centered in
the origin.
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9 The Ellipsoid Algorithm

E' = R(E")

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke
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9 The Ellipsoid Algorithm
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9 The Ellipsoid Algorithm

E' = R(E")
—R(x) | x1Q 'x <1}
-y | RO TRy <1
= [y [y'®RH QTR Yy < 1)
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9 The Ellipsoid Algorithm

Hence,
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9 The Ellipsoid Algorithm

Hence,
Q' = RQ'R'
n? 2

=R. I-— t _Rt
n2—1( n+1e1e1>
2

__n t 2 t

= oq (R = (ReDRe))

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke



9 The Ellipsoid Algorithm

Hence,

2
n (I— 2
n2-1 n+1
n2

ele{> - R?

2
- (R-R' = (Re1)(Re1)")

n2 -1
. n? ( 2 LtaatL>
T n2-1 n+1|Ltal?
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9 The Ellipsoid Algorithm
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9 The Ellipsoid Algorithm

E' =L(E)
= {Lx) | xtQ" 'x <1}
@ T Ly <13
= {yIytah QL y <13
={y | y"LQ'LH 'y =1}
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9 The Ellipsoid Algorithm
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9 The Ellipsoid Algorithm

Hence,
Q =LQ'L!
2 £t
_I. n (_ 2 LaaL)_t
n2 -1 n+1 atQa
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9 The Ellipsoid Algorithm

Hence,
Ql — LQILt
. n? ( 2 L'aa'l
n2 -1 n+1 atQa
(Q— 2 QaatQ>
n2 -1 n+1 atQa

)

t
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:. Q =M

4: repeat

5 if c € K then return ¢

6
7

else
choose a violated hyperplane a
1
8: C < C— Qa
2 t
n 2 Qaa'Q
9: — =
Q n2—1<Q n+1 ana>
10: endif
11: until 77?7

12: return “K is empty”




Repeat: Size of basic solutions

Lemma 7

LetP = {x € R" | Ax < b} be a bounded polytop. Let {(amax) be
the maximum encoding length of an entry in A. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n{amax)+nlogan
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Repeat: Size of basic solutions

Lemma 7

LetP = {x € R" | Ax < b} be a bounded polytop. Let {(amax) be
the maximum encoding length of an entry in A. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n{amax)+nlogan

In the following we use § := 2"{amax}+nlogyn

Note that here we have P = {x | Ax < b}. The previous lemmas
we had about the size of feasible solutions were slightly
different as they were for different polytopes.
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Repeat: Size of basic solutions

Proof:

_ A b
Let A = [—A Im}, b= (—b)’ be the matrix and right-hand

vector after transforming the system to standard form.

The determinant of the matrices Ag and Mj (matrix obt. when
replacing the j-th column of Ag by b) can become at most

det(Ap), det(M;) < [[fmax]™
< (V- 2lamax))n < pnldmax)+nlogn

where imax is the longest column-vector that can be obtained
after deleting all but n rows and columns from A.

This holds because columns from I, selected when going from
A to A do not increase the determinant. Only the at most n
columns from matrices A and —A that A consists of contribute.



How do we find the first ellipsoid?
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.
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For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < 6.
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How do we find the first ellipsoid?
For feasibility checking we can assume that the polytop P is
bounded.
In this case every entry x; in a basic solution fulfills |x;| < 6.

Hence, P is contained in the cube -6 < x; < 6.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"B(0,1) < (nd6)"B(0,1).
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When can we terminate?

LetP:={x | Ax < b} withAeZand b € Z be a bounded
polytop. Let {(amax) be the encoding length of the largest entry
in A orb.
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When can we terminate?

LetP:={x | Ax < b} withAeZand b € Z be a bounded
polytop. Let {(amax) be the encoding length of the largest entry
in A orb.

Consider the following polytope

1

PA::{xlesb+21\ : },
1

where A = 62 + 1.
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Lemma 8
P, is feasible if and only if P is feasible.
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Lemma 8
P, is feasible if and only if P is feasible.

«<: obvious!

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke






=

Consider the polytops
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=

Consider the polytops

p=lx [_AA zm]x - (2,)x=0]

and
A b !
P;\z{xl[_AIm}x=<_b>+; : ;XZO}.
1

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.



=

Consider the polytops

p=lx [_AA zm]x - (2,)x=0]

and
_ A b
P;\z{xl[_AIm}x=<_b>+; : ;sz}.
1

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.

P, is bounded since P, and P are bounded.



_ A _ b
Let A = [_Alm]andb: (—b)'

P, feasible implies that there is a basic feasible solution

represented by
1

1.
xp = Aglh + XAgl

(The other x-values are zero)



_ A _ b
Let A = [_Alm]andb: (—b)'

P, feasible implies that there is a basic feasible solution
represented by

1.
xp = Aglh + XAgl

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.



_ A _ b
Let A = [_Alm]andb: (—b)'

P, feasible implies that there is a basic feasible solution
represented by

1.
xp = Aglh + XAgl

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(Aglb); <0 < (Aglhb); + %(Agli)i



By Cramers rule we get

1

A-1liy. ALy, &
(Ag'D)i <0 = (Ag'B)i < — s

and
(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by 1.
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By Cramers rule we get

1

(Al_;lb)l <0 = (Aglb)l < —m

and
(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by 1.

However, we showed that the determinants of Ag and Mj can
become at most §.
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By Cramers rule we get

- . 1
(ABlb)i<0 B (ABlb)iS—m
and

(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by 1.

However, we showed that the determinants of Ag and Mj can
become at most §.

Since, we chose A = 62 + 1 this gives a contradiction.
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9 The Ellipsoid Algorithm



Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = 6%V01(B(O, 1)).
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
< b+ Al - 1]
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
<bi+ Al - 1] < by + v - 20@max) Ly

\/ﬁ . 2(amax>

<b;+ 53
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Lemma 9
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
<bi+ Al - 1] < by + v - 20@max) Ly

ﬁ . 2(amax> . 1 1

<b;+ 53 =
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Lemma 9
If Py is feasible then it contains a ball of radius v := 1/683. This
has a volume of at least v"'vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0))i = (Ax); + (AD); < b; + Al
< b; + Al - ||€7|| < b; + ym - 2famad Ly

ﬁ . 2(amax> <h 1 1

<b;+ 53 =

Hence, x + U is feasible for Py which proves the lemma.
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How many iterations do we need until the volume becomes too
small?
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How many iterations do we need until the volume becomes too
small?

o T vol(B(0,R)) < vol(B(0,7))
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How many iterations do we need until the volume becomes too
small?

e~ 2@ - vol(B(0,R)) < vol(B(0,7))

Hence,
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How many iterations do we need until the volume becomes too
small?

e ~ 3D - vol(B(0,R)) < vol(B(0,7))

Hence,

vol(B(0,R)) )

i>2(n+ 1)1n(v01(3<0,r>>
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How many iterations do we need until the volume becomes too
small?

e ~ 3D - vol(B(0,R)) < vol(B(0,7))

Hence,

vol(B(0,R)) )
vol(B(0,7))

=2(n+-n1n(n”5"-5*ﬂ

i>un+nm(

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke



How many iterations do we need until the volume becomes too
small?

PRy - vol(B(0,R)) < vol(B(0,7))
Hence,

vol(B(0,R)) )
vol(B(0,7))
=2(n+-n1n(n"5"-5*ﬁ

=8nn+1)In(d) + 2(n + 1)nln(n)

i>mn+nm(
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How many iterations do we need until the volume becomes too
small?

PRy - vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2(n+1)In(n"s" - 5°")
=8n(n+1)In(d) + 2(n + 1)nln(n)
= O(poly(n, (amax)))

i>2(n+1)ln(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R", radii R and »
2 with K € B(O,R), and B(x,7r) < K for some x
3: output: point x € K or “K is empty”

4: Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5:¢c <0

6: repeat

7 if c € K then return c

8 else

9 choose a violated hyperplane a

1
10: C < C— Qa
n+1 atQa
n? 2 QaalQ
1 Q‘_nz—l(Q_nJrl atQa)
12: endif

13: until det(Q) < 72" // i.e., det(L) < +"
14: return “K is empty”




Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
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Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x € R™ and either
» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
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In order to find a point in K we need

» a guarantee that a ball of radius 7 is contained in K,
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Let K < R™ be a convex set. A separation oracle for K is an
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» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,
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‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke



Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c,R) with radius R that contains K,
» a separation oracle for K.

The Ellipsoid algorithm requires O (poly(n) - log(R /7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.
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