

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^t x \ge M_{\max} + 1$ and check for feasibility.

החוחר	EADS II © Harald Räcke
	© Harald Räcke

158

Issues/Questions:

How do you choose the first Ellipsoid? What is its volume?

8

- ▶ What if the polytop *K* is unbounded?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

Ellipsoid Method

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating *K* from *z* (e.g. a violated constraint in the LP).
 Shift hyperplane to contain

Е

- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $K \cap H$.
- REPEAT

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

Definition 3

A mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where *L* is an invertible matrix is called an affine transformation.

Definition 4

A ball in \mathbb{R}^n with center *c* and radius *r* is given by

$$B(c,r) = \{x \mid (x-c)^t (x-c) \le r^2\} \\ = \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

EADS II ©Harald Räcke	9 The Ellipsoid Algorithm	

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the transformation function for the Ellipsoid) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix O'for the original ellipsoid E.

a ca

EADS II UIIII © Harald Räcke 9 The Ellipsoid Algorithm

164

162

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^t L^{-1^t} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^t Q^{-1}(y-t) \le 1\}$

where $Q = LL^t$ is an invertible matrix.

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

The Easy Case

- The obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.
- ► The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

EADS II المالية EADS II	9 The Ellipsoid Algorithm	
🛛 🕒 🛛 🖉 GHarald Räcke		166

The Easy Case
•
$$(e_1 - \hat{c}')^t \hat{Q}'^{-1}(e_1 - \hat{c}') = 1$$
 gives
 $\begin{pmatrix} 1 - t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^t \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1 - t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$
• This gives $(1 - t)^2 = a^2$.

The Easy Case

• As $\hat{Q}' = \hat{L}' \hat{L}'^t$ the matrix \hat{Q}'^{-1} is of the form

	$\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0\\ 0 & \frac{1}{b^2} & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$	
EADS II © Harald Räcke	9 The Ellipsoid Algorithm	167

Summary

So far we have

$$a = 1 - t$$
 and $b = \frac{1 - t}{\sqrt{1 - 2t}}$

EADS II © Harald Räcke	9 The Ellipsoid Algorithm	170

The Easy Case

We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 6

Let *L* be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

 $\operatorname{vol}(L(K)) = |\det(L)| \cdot \operatorname{vol}(K)$.

9 The Ellipsoid Algorithm

The Easy Case

• We want to choose t such that the volume of \hat{E}' is minimal. $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| .$ where $\hat{O}' = \hat{L}' \hat{L}'^t$. We have $\hat{L}'^{-1} = \begin{pmatrix} \bar{a} & 0 & \dots & 0 \\ 0 & \bar{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \bar{1} \end{pmatrix} \text{ and } \hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & h \end{pmatrix}$ • Note that *a* and *b* in the above equations depend on *t*, by the previous equations. ∏∏∏ EADS II ©Harald Räcke EADS II 9 The Ellipsoid Algorithm

The Easy Case $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')|$ = vol(B(0,1)) · ab^{n-1} $= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$ $= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$

EADS II © Harald Räcke 9 The Ellipsoid Algorithm 175

The Easy Case

EADS II

174

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

9 The Ellipsoid Algorithm CHarald Räcke

The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{split} \gamma_n^2 &= \Big(\frac{n}{n+1}\Big)^2 \Big(\frac{n^2}{n^2-1}\Big)^{n-1} \\ &= \Big(1 - \frac{1}{n+1}\Big)^2 \Big(1 + \frac{1}{(n-1)(n+1)}\Big)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\ &= e^{-\frac{1}{n+1}} \end{split}$$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives
$$\gamma_n \leq e^{-\frac{1}{2(n+1)}}$$
.

EADS II © Harald Räcke EADS II

9 The Ellipsoid Algorithm

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

EADS II ¦∐||||∐ © Harald Räcke 9 The Ellipsoid Algorithm

180

178

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- Use the transformations R and f to get the a ea new center c' and the new matrix O'for the original ellipsoid E.

EADS II ©Harald Räcke	9 The Ellipsoid Algorithm	
UUU G Harald Räcke		179

 $E^{\hat{E}}$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^t(x - c) \le 0\}$;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{t}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{t}(f(y)-c) \le 0\}$
= $\{y \mid a^{t}(f(y)-c) \le 0\}$
= $\{y \mid a^{t}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{t}L)y \le 0\}$

This means $\bar{a} = L^t a$.

DD EADS II ©Harald Räcke $\hat{E}' \ \bar{E}'$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1} \Big(\frac{L^t a}{\|L^t a\|} \Big) = -e_1 \quad \Rightarrow \quad - \frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1}e_1 = -\frac{1}{n+1}\frac{L^t a}{\|L^t a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1}L\frac{L^t a}{\|L^t a\|} + c$$
$$= c - \frac{1}{n+1}\frac{Qa}{\sqrt{a^t Qa}}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

because for a = n/n+1 and $b = n/\sqrt{n^2-1}$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2}-1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

EADS II 9 The Ellipsoid Algorithm © Harald Räcke 183

9 The Ellipsoid Algorithm

$$\tilde{E}' = R(\hat{E}')$$

$$= \{R(x) \mid x^t \hat{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (R^{-1}y)^t \hat{Q}'^{-1} R^{-1} y \le 1\}$$

$$= \{y \mid y^t (R\hat{Q}'R^t)^{-1} Q'^{-1} R^{-1} y \le 1\}$$

$$= \{y \mid y^t (R\hat{Q}'R^t)^{-1} y \le 1\}$$
P The Ellipsoid Algorithm
9 The Ellipsoid Algorithm
155

9 The Ellipsoid Algorithm

Hence,

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^t \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^t \Big) \cdot R^t \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^t - \frac{2}{n+1} (Re_1) (Re_1)^t \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^t a a^t L}{\|L^t a\|^2} \Big) \end{split}$$

	9 The Ellipsoid Algorithm	
UUU © Harald Räcke		186

9 The Ellipsoid Algorithm Hence, $Q' = L\bar{Q}'L^{t}$ $= L \cdot \frac{n^{2}}{n^{2}-1} \left(I - \frac{2}{n+1} \frac{L^{t}aa^{t}L}{a^{t}Qa}\right) \cdot L^{t}$ $= \frac{n^{2}}{n^{2}-1} \left(Q - \frac{2}{n+1} \frac{Qaa^{t}Q}{a^{t}Qa}\right)$

חח הר	EADS II © Harald Räcke
	© Harald Räcke

9 The Ellipsoid Algorithm

188

9 The Ellipsoid Algorithm

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^{t}\bar{Q}'^{-1}x \leq 1\}$$

$$= \{y \mid (L^{-1}y)^{t}\bar{Q}'^{-1}L^{-1}y \leq 1\}$$

$$= \{y \mid y^{t}(L\bar{Q}'L^{t})^{-1}\bar{Q}' \leq 1\}$$

$$= \{y \mid y^{t}(\underline{L\bar{Q}'L^{t}})^{-1}y \leq 1\}$$
P The Ellipsoid Algorithm
P The P T

Algorit	hm 1 ellipsoid-algorithm	
1: inpu	it: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$	
2: out	put: point $x \in K$ or " K is empty"	
3: <i>Q</i> ←	. ???	
4: repe	eat	
5:	if $c \in K$ then return c	
6:	else	
7:	choose a violated hyperplane <i>a</i>	
8:	$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$	
9:	$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^t Q}{a^t Qaa} \Big)$	
10:	endif	
11: unt i	il ???	

Repeat: Size of basic solutions

Lemma 7

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polytop. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^{2n\langle a_{\max} \rangle + n \log_2 n}$.

```
In the following we use \delta := 2^{n \langle a_{\max} \rangle + n \log_2 n}.
```

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

٦r	חה	ΠГ	1	EADS II © Harald Räcke	
				© Harald Räcke	2

9 The Ellipsoid Algorithm

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded.

In this case every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0, 1) \le (n\delta)^n B(0, 1)$.

192

190

Repeat: Size of basic solutions

Proof: Let $\bar{A} = \begin{bmatrix} A \\ -A \end{bmatrix}$, $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the *j*-th column of \bar{A}_B by \bar{b}) can become at most

 $\begin{aligned} \det(\bar{A}_B), \det(\bar{M}_j) &\leq \|\vec{\ell}_{\max}\|^n \\ &\leq (\sqrt{n} \cdot 2^{\langle a_{\max} \rangle})^n \leq 2^{n \langle a_{\max} \rangle + n \log_2 n} \end{aligned}$

where $\vec{\ell}_{max}$ is the longest column-vector that can be obtained after deleting all but n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \overline{A} to \overline{A}_B do not increase the determinant. Only the at most n columns from matrices A and -A that \overline{A} consists of contribute.

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$P_{\lambda} := \left\{ x \mid Ax \leq b + rac{1}{\lambda} \begin{pmatrix} 1 \\ dots \\ 1 \end{pmatrix}
ight\}$$
,

 P_{λ} is feasible if and only if P is feasible.

←: obvious!	
EADS II 9 TI © Harald Räcke	ne Ellipsoid Algorithm

Let
$$\bar{A} = \begin{bmatrix} A \\ -A \end{bmatrix}$$
, and $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$.

 $\bar{{\it P}}_{\lambda}$ feasible implies that there is a basic feasible solution represented by

 $x_B = \bar{A}_B^{-1}\bar{b} + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix}1\\\vdots\\1\end{pmatrix}$

(The other *x*-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \leq (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

⇒:

Consider the polytops

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$ar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + rac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\} .$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \implies (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

194

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$

where \bar{M}_j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

Lemma 9

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0, 1) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0, 1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

 $(A(x+\vec{\ell}))_{i} = (Ax)_{i} + (A\vec{\ell})_{i} \le b_{i} + A_{i}\vec{\ell}$ $\le b_{i} + ||A_{i}|| \cdot ||\vec{\ell}|| \le b_{i} + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r$ $\le b_{i} + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^{3}} \le b_{i} + \frac{1}{\delta^{2} + 1} \le b_{i} + \frac{1}{\lambda}$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

EADS II	9 The Ellipsoid Algorithm	
🛛 💾 🗋 🖉 @ Harald Räcke		198

Algo	rithm 1 ellipsoid-algorithm
1: 1	nput: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii <i>R</i> and <i>r</i>
2:	with $K \subseteq B(0, R)$, and $B(x, r) \subseteq K$ for some x
3: 0	utput: point $x \in K$ or "K is empty"
4: ($Q \leftarrow \operatorname{diag}(R^2, \dots, R^2) // \text{ i.e., } L = \operatorname{diag}(R, \dots, R)$
5: <i>C</i>	$\leftarrow 0$
6: r	epeat
7:	if $c \in K$ then return c
8:	else
9:	choose a violated hyperplane <i>a</i>
10:	$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$
11:	$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^t Q}{a^t Qa} \Big)$
12:	endif
13: L	Intil $det(Q) \le r^{2n}$ // i.e., $det(L) \le r^n$
14: r	eturn "K is empty"

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1) \ln \left(n^n \delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1) \ln(\delta) + 2(n+1)n \ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n, \langle a_{\max} \rangle))$$
FADS II
9 The Ellipsoid Algorithm
9 The Ellipsoid Algorithm

Separation Oracle:

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating *x* from *K*.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- ► a separation oracle for *K*.

The Ellipsoid algorithm requires $O(\text{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.