Traveling Salesman

Given a set of cities ({1,...,7n}) and a symmetric matrix

C = (¢ij), ¢ij = 0 that specifies for every pair (i, j) € [n] x [n]
the cost for travelling from city i to city j. Find a permutation 1t
of the cities such that the round-trip cost

n-1

Cn()ym(n) + z Crr(i)m(i+1)
i=1

is minimized.
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Traveling Salesman

Theorem 2
There does not exist an O (2™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i, ) ¢ E then set ¢;j to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

» An O(2™)-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.
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Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cij + Cjk -

It is convenient to view the input as a complete undirected graph
G = (V,E), where ¢;; for an edge (i, j) defines the distance
between nodes i and j.
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TSP: Lower Bound |

Lemma 3

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

» This gives a spanning tree of cost at most OPT1sp(G).
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TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

» Repeat until all nodes have been processed.
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TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are
taken in Prims algorithm.
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TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.
Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (si, V;)
and (vi,ri).

This increases the cost by

Cs;v; + Cupry = Csiry < 2Cs;,;
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TSP: Greedy Algorithm

The edges (s;, v;) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

Hence,
> ¢sv; = OPTusT(G)
i

which with the previous lower bound gives a 2-approximation.
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TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,c") of
G = (V,E,c) such that for any edge (i, j) € E' ¢'(i,j) = c(i, j).

Then we can find a TSP-tour of cost at most

» Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.

This technique is known as short cutting the Euler tour.
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TSP: A different approach

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTyMsT(G).

Hence, short-cutting gives a tour of cost no more than
2 - OPTyst(G) which means we have a 2-approximation.
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TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd
degree vertices in the MST (note that there are an even number
of them).
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TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTrsp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPTrsp(G) /2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTyst(G) + OPT1sp(G) /2 < SOPT1sp(G)

Short cutting gives a %-approximation for metric TSP.

This is the best that is known.
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Christofides. Tight Example

» optimal tour: n edges.

» MST: n — 1 edges.

» weight of matching (n+1)/2-1

» MST+matching = 3/2-n
m EADS Il 16 TSP
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Tree shortcutting. Tight Example

» edges have Euclidean distance.
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