Repetition: Primal Dual for Set Cover

Primal Relaxation:

min zi'(:l WiXi
s.t. YueU Zi:ueSi X
Vie{l,..., k} Xi

2%
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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Sk wix
s.t. YueU Zi:ueSi X
Vie{l,..., k} X

Dual Formulation:

max Dueu Yu
s.t. Vie{l,...,k} zu;ueSi_yu
Yu

2%

V1A

Wi
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Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
> ldentify an element e that is not covered in current primal
integral solution.
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable 7y, until a dual constraint becomes

tight (maybe increase by 0!).
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable 7y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set x; = 1 (add this set to

your solution).
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Repetition: Primal Dual for Set Cover

Analysis:
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =W,

eeSj
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =W,

eeSj

» Hence our cost is
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =W,

eeSj

» Hence our cost is

2.
J
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve = wj

eeSj

» Hence our cost is

Z%—ZZye

Jj e€S;
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =W,

eeSj

» Hence our cost is

ZwJ—Z ZJ’e—ZHJ ecSit-ve

Jj e€S;
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =W,

eeSj

» Hence our cost is

dwj=2 ZJ’e—ZHJ eeSi}-ve<f- Zye<f OPT

j Jj e€S;
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj>0= > Ye=w;

eeSj
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj>0= > Ye=w;

eeSj

If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Jie€Ss;

then the solution would be optimal!!l

‘m EADS Il 21 Primal Dual Revisited =] =
©Harald Racke



We don’t fulfill these constraint but we fulfill an approximate
version:
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We don’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=>1< > x;=f

Jie€s;
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We don'’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=>1< > x;=f

Jie€s;
This is sufficient to show that the solution is an
f-approximation.
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Suppose we have a primal/dual pair

min 2 CiXj max
s.t. Vi Zj: aijx; = b; s.t. Vj
vj xj =2 0 Vi

2ibiyi
i aijYi
Yi

IA

%
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Suppose we have a primal/dual pair

min > jcix;j max 2.ibiyi
s.t. Vi XYjaix; = b s.t. Vj Xiaijyi < ¢j
Vj X; = 0 Vi vi = 0

and solutions that fulfill approximate slackness conditions:

1C
e

v

xj>0= Zaijyi
i

yi>0= > aixj < pb;
J
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Then

2. CjXj
J

[T
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Then

2. CjXj
J

T
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Then

right hand side of j-th
dual constraint

i
2K
J

T
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Then

Z CiXj|=

2| 2 @i ) %

J

T
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Then

Deixjl< o | Y aijyi| x;
Jj i

J
o3 (Sau, )
i \J
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Then

2. CjXj
J

<o | Dlaijyi| x;
7 \q

rimal cost
O(Z Zaijxj Vi

i \j
<aB- > biyi
i

©Harald Racke
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Then

Deixjl< o | Y aijyi| x;
7 7 \7

rimal cost
O(Z Zaijxj Vi

i \j
< aB > biyi
i

dual objective
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V,E) and non-negative weights w, = 0
for vertex v € V.

m EADS Il 21 Primal Dual Revisited =) =
©Harald Racke



Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.
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We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some
cycles.
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We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.
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We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.
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Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)
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Let C denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min Dy WyXy
st. VCeCl DyeccXxv
Yv Xy

Dual Formulation:

max 2.cecyc
st. YveEV Scoecye
vC Yc

%

2

IA

%
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If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0
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If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
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If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y, until dual constraint for some vertex v becomes
tight.
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If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase y, until dual constraint for some vertex v becomes
tight.
» set x, = 1.
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Then

zwvxv
v

[T
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Then

Zwvxv ZZ Z YcXv
v

vV CwveC

T
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Then

Zwvxv =Z Z YcXv
v

vV CwveC

>, 2. e

veS CveC

where S is the set of vertices we choose.
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Then

Zwvxv =Z Z YcXv
v

vV CwveC
=2 > v
veS CveC
=>18nCl-yc
C

where S is the set of vertices we choose.
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Then

Zwvxv =Z Z YcXv
v

vV CwveC
=2 > v
veS CveC
=>18nCl-yc
C

where S is the set of vertices we choose.
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Then

Zwvxv ZZ Z YcXv
v

vV CwveC
=2 > v
veS CveC
=>1SnCl-yc
C

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but
this is unrealistic.
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Algorithm 1 FeedbackVertexSet

1. vy <0

2:x <0

3: while exists cycle C in G do

4: increase yc until there is v € C s.t. Y c.pec Ve = Wy
5 Xy =1

6 remove v from G

7 repeatedly remove vertices of degree 1 from G
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.

‘m EADS Il 21 Primal Dual Revisited =] =
©Harald Racke



Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most & we get an x-approximation.
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Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most & we get an x-approximation.

Theorem 15

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

Yc>0=>|SNC| <0O(logn) .
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R" find a shortest path between s and t
w.r.t. edge-weights c.
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
s.t. vV§SeSs ze:g(s)xe > 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Dgoess) s
vSesS s

V1A

c(e)
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Primal Dual for Shortest Path

The Dual:

Here 6(S) denotes the set of edges with exactly one end-point in

max
s.t.

2.5 Vs
Ve€E Dsecss)Vs
vSesS Vs

S,and S={ScV:seS,te¢S}.

<
>

c(e)
0

T
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Primal Dual for Shortest Path
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.
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Algorithm 1 PrimalDualShortestPath

1. v <0

2. F <0

3: while there is no s-t path in (V,F) do

4 Let C be the connected component of (V,F) con-
taining s

Increase yc¢ until there is an edge ¢’ € 6(C) such
that Xg.re5(s) Vs = c(e).

F <~ Fu{e'}

: Let P be an s-t path in (V,F)

8: return P

(9]

N @
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Lemma 16
At each point in time the set F forms a tree.
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Lemma 16
At each point in time the set F forms a tree.

Proof:

> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
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Lemma 16
At each point in time the set F forms a tree.

Proof:
> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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> cee)

ecP

T
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D)= > ys

ecP ecP S:ecd(S)

T
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> ce)

ecP

> 2. s

ecP S:ecd(S)

S PSS

Sises,t¢S

“ys .

T
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> ce)

ecP

> 2. s

ecP S:ecd(S)

S PSS

Sises,t¢S

“ys .

T
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d.c@) =2 > s

ecP ecP S:ecd(S)

= S IPASS) s .
S:seSt¢S

If we can show that ys > 0 implies [P N 6(S)| =1 gives

> cle) = > ys < OPT
eeP S

by weak duality.
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d.c@) =2 > s

ecP ecP S:ecd(S)

= > P& - vs .
S:seSt¢S

If we can show that ys > 0 implies [P N 6(S)| =1 gives

> cle) => ys < OPT
ecP S

by weak duality.

Hence, we find a shortest path.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F’ U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F’ U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

‘m EADS Il 21 Primal Dual Revisited =] =
©Harald Racke



Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si,ti,i=1,...,k, and a cost function ¢ : E — R* on the edges.
Find a subset F < E of the edges such that for every

i€ {1,...,k} there is a path between s; and t; only using edges
in F.
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Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si,ti,i=1,...,k, and a cost function ¢ : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ec(e)xe
s.t. VScV:SeSiforsomei DocssXe = 1
Ve € E x. € {0,1}
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Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si,ti,i=1,...,k, and a cost function ¢ : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ec(e)xe
s.t. VScV:SeSiforsomei DocssXe = 1
Ve € E xe € {0,1}

Here S; contains all sets S suchthats; € Sand t; ¢ S.
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max 2s:3istSe s; Vs
s.t. VeeE 2 s:ees(S) VS c(e)
ys = 0

IA

The difference to the dual of the shortest path problem is that
we have many more variables (sets for which we can generate a
moat of non-zero width).
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Algorithm 1 FirstTry

1y <0

2. F<0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C n {s;,t;}| = 1 for some i.

5: Increase yc¢ until there is an edge ¢’ € 6(C) s.t.
2.5espe’es(S) VS = Ce!

6: F—Fu{e'}

7: Let P; be an s;-t; path in (V,F)

8: return |J; P;
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D=2 > s

ecF ecF S:eed(S)

T
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dDcele)=> > ys=>18(S)NFl-ys .

ecF ecF S:e€d(S) S

T
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dDcele)=> > ys=>18(S)NFl-ys .

ecF ecF S:e€d(S) S

T
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docle)=2 > ys—Zwsmﬂ vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.
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2c@=2 2 ¥s=2I8)nFl-ys.

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a graph on k + 1 vertices vg, vy,..., Vk.
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2c@=2 2 ¥s=2I8)nFl-ys.

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a graph on k + 1 vertices vg, vy,..., Vk.

» The i-th pair is vg-v;.
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docle)=2 > ys—z|5s>mf| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a graph on k + 1 vertices vg, vy,..., Vk.
» The i-th pair is vg-v;.

» The first component C could be {vg}.
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docle)=2 > ys—z|5s>mf| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a graph on k + 1 vertices vg, vy,..., Vk.

v

The i-th pair is vg-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.
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docle)=2 > ys—stmn Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |[6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a graph on k + 1 vertices vg, vy,..., Vk.

v

The i-th pair is vg-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
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docle)=2 > ys—stmn Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |[6(S) N F| < o« we are in
good shape.

However, this is not true:
» Take a graph on k + 1 vertices vg, vy,..., Vk.

» The i-th pair is vg-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
Yive} > 0 but [6({vo}) NF| =

v
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Algorithm 1 SecondTry

1:y<0;F<0;¢ -0

2: while not all s;-t; pairs connected in F do

3: {—4+1
4: Let C be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some i.

Increase y¢ for all C € C uniformly until for some edge
ep €6(C), C" € Cs.t. Xge)e5(5) Vs = Cey
6: F — Fu {ep}

7. FF < F

8: for k — £ downto 1 do // reverse deletion
9 if F/ — ey is feasible solution then
0: remove ey from F’

1: return F’

vl

1
1
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The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.
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Example
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Example

(]
S1 52 tr

(5]

053

t3
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Lemma 17
For any C in any iteration of the algorithm

> 16(C)nF'| < 2|C]|

ceC

This means that the number of times a moat from C is crossed
in the final solution is at most twice the number of moats.

Proof: later...
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Dte=> > ys=>IF &S| ys.

ecF’ ecF’ S:eed(S) S
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Dte=> > ys=>IF &S| ys.

ecF’ ecF’ S:eed(S) S
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dDece=> > yS—ZIF NéS)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S
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Dce=D> D> ys=>IFn&S) s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFnsO
ceC

and the increase of the right hand side is 2¢|C].
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dDece=> > yS—ZIF N&(S)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFns0)
ceC

and the increase of the right hand side is 2¢|C].

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.
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Lemma 18
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC
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Lemma 18
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

‘m EADS Il 21 Primal Dual Revisited =] =
©Harald Racke



Lemma 18
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
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Lemma 18

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).
» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H=F —Fj.
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Lemma 18

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» LetH =F —F;.

» All edges in H are necessary for the solution.
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» Contract all edges in F; into single vertices V'.

T
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» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.
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» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

T
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» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)
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» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

> Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T

> We have
?
> deg(v) = > [5(C) nF'| =2|C| = 2|R|
veR cecC
EADS 1l 21 Primal Dual Revisited =) = =

©Harald Racke



» Suppose that no node in B has degree one.

T
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» Suppose that no node in B has degree one.
» Then
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» Suppose that no node in B has degree one.

» Then

Y. deg(v)

VER

T
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» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

T
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» Suppose that no node in B has degree one.

» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(IR[+ [B]) — 2|B|
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» Suppose that no node in B has degree one.

» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(IRl + [B]) — 2|B| = 2|R|
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» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(IRl + [B]) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

T
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» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(IRl + [B]) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

T
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» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

2(IR[ + |Bl) — 2|B| = 2|R]|

IA

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

T
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» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

2(IR[ + |Bl) — 2|B| = 2|R]|

IA

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

» But then it must be a red node.

T
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