
10 Karmarkars Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem

ñ We can check for feasibility by using the two phase

algorithm. ⇒ can assume that LP is feasible.

ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be

positive) and the constraint
∑
i xi = 1. ⇒ solution in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b is 0

ñ If A does not have full column rank we can delete

constraints (or conclude that the LP is infeasible).

⇒ A has full row rank

We still need to make e/n feasible.
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10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points

x̄(0) = e
n , x

(1), x(2), . . . with

ctxk ≤ 2−Θ(L)ctx0

For k = Θ(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can

“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible

region. Determine a distance to travel along this direction

such that you do not leave the simplex (and you do not

touch the border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.
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The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

Note that x̄ > 0 in every coordinate. Therefore the above is well

defined.
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Properties

F−1
x̄ really is the inverse of Fx̄ :

Fx̄(F−1
x̄ (x̂)) =

Ȳ−1 Ȳ x̂
et Ȳ x̂

etȲ−1 Ȳ x̂
et Ȳ x̂

= x̂
etx̂

= x̂

because x̂ ∈ ∆.

Note that in particular every x̂ ∈ ∆ has a preimage (Urbild) under

Fx̄.
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Properties

x̄ is mapped to e/n

Fx̄(x̄) =
Ȳ−1x̄
etȲ−1x̄

= e
ete

= e
n
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Properties

A unit vectors ei is mapped to itself:

Fx̄(ei) =
Ȳ−1ei
etȲ−1ei

= (0, . . . ,0, x̄i,0, . . . ,0)t

et(0, . . . ,0, x̄i,0, . . . ,0)t
= ei
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Properties

All nodes of the simplex are mapped to the simplex:

Fx̄(x) =
Ȳ−1x
etȲ−1x

=

(
x1
x̄1
, . . . , xnx̄n

)t
et
(
x1
x̄1
, . . . , xnx̄n

)t =
(
x1
x̄1
, . . . , xnx̄n

)t
∑
i
xi
x̄i

∈ ∆
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The Transformation

Easy to check:

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.
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10 Karmarkars Algorithm

After the transformation we have the problem

min{ctF−1
x̄ (x) | AF−1

x̄ (x) = 0; x ∈ ∆}

=min
{ctȲx
etȲx

| AȲx
etȲx

= 0; x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1
x̄ (∆) = ∆).

Since the optimum solution is 0 this problem is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .
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etȲx

= 0; x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1
x̄ (∆) = ∆).

Since the optimum solution is 0 this problem is the same as
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etȲx

| AȲx
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We still need to make e/n feasible.

ñ We know that our LP is feasible. Let x̄ be a feasible point.

ñ Apply Fx̄, and solve

min{ĉtx | Âx = 0; x ∈ ∆}

ñ The feasible point is moved to the center.
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10 Karmarkars Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary (why?).

For this we compute the radius of a ball that completely lies in

the simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.
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10 Karmarkars Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖. (r is the distance between

the center e/n and the center of the (n−1)-dimensional simplex

obtained by intersecting a side (xi = 0) of the unit cube with ∆.)

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}
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The Simplex

x1

x2

x3
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10 Karmarkars Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the simplex).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
(
Â
et

)

We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.
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Â
et

)

We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ
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10 Karmarkars Algorithm

We get the new point

x̂(ρ) = e
n
− ρ d̂
‖d‖

for ρ < r .

Choose ρ = αr with α = 1/4.
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10 Karmarkars Algorithm

Iteration of Karmarkars algorithm:

ñ Current solution x̄. Ȳ := diag(x̄1, . . . , x̄n).
ñ Transform the problem via Fx̄(x) = Ȳ−1x

et Ȳ−1x . Let ĉ = Ȳ c, and

Â = AȲ .

ñ Compute

d = (I − Bt(BBt)−1B)ĉ ,

where B =
(
Â
et

)
.

ñ Set

x̂ = e
n
− ρ d
‖d‖ ,

with ρ = αr with α = 1/4 and r = 1/
√
n(n− 1).

ñ Compute x̄new = F−1
x̄ (x̂).
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The Simplex

x1

x2

x3
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Lemma 2

The new point x̂ in the transformed space is the point that

minimizes the cost ĉtx among all feasible points in B( en , ρ).
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Proof: Let z be another feasible point in B( en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the

same measured w.r.t. the cost-vector ĉ or the projected

cost-vector d.
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(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the

same measured w.r.t. the cost-vector ĉ or the projected
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= (Bt(BBt)−1Bĉ)t
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As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,
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(ĉ − d)t = (ĉ − Pĉ)t
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cost-vector d.

EADS II 10 Karmarkars Algorithm

© Harald Räcke 222/443



But

dt

‖d‖ (x̂ − z)

= dt

‖d‖

(
e
n
− ρ d
‖d‖ − z

)
= dt

‖d‖

(
e
n
− z

)
− ρ < 0

as e
n − z is a vector of length at most ρ.

This gives d(x̂ − z) ≤ 0 and therefore ĉx̂ ≤ ĉz.
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In order to measure the progress of the algorithm we introduce

a potential function f :

f(x)

=
∑
j

ln(
ctx
xj
) = n ln(ctx)−

∑
j

ln(xj) .

ñ The function f is invariant to scaling (i.e., f(kx) = f(x)).
ñ The potential function essentially measures cost (note the

term n ln(ctx)) but it penalizes us for choosing xj values

very small (by the term −
∑
j ln(xj); note that − ln(xj) is

always positive).
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For a point z in the transformed space we use the potential

function

f̂ (z)

:= f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.
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etȲ z

) = f(Ȳz)
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The basic idea is to show that one iteration of Karmarkar results

in a constant decrease of f̂ . This means

f̂ (x̂) ≤ f̂ ( e
n
)− δ ,

where δ is a constant.

This gives

f(x̄new) ≤ f(x̄)− δ .
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Lemma 3

There is a feasible point z (i.e., Âz = 0) in B( en , ρ)∩∆ that has

f̂ (z) ≤ f̂ ( e
n
)− δ

with δ = ln(1+α).

Note that this shows the existence of a good point within the

ball. In general it will be difficult to find this point.
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Let z∗ be the feasible point in the transformed space where ĉtx
is minimized. (Note that in contrast x̂ is the point in the

intersection of the feasible region and B( en , ρ) that minimizes

this function; in general z∗ ≠ x̂)

z∗ must lie at the boundary of the simplex. This means

z∗ ∉ B( en , ρ).

The point z we want to use lies farthest in the direction from e
n

to z∗, namely

z = (1− λ) e
n
+ λz∗

for some positive λ < 1.
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Hence,

ĉtz = (1− λ)ĉt e
n
+ λĉtz∗

The optimum cost (at z∗) is zero.

Therefore,
ĉt en
ĉtz

= 1
1− λ

EADS II 10 Karmarkars Algorithm

© Harald Räcke 229/443



Hence,
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The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j ))

=
∑
j

ln(1+ nλ
1− λz

∗
j )

EADS II 10 Karmarkars Algorithm

© Harald Räcke 230/443



The improvement in the potential function is

f̂ (
e
n
)− f̂ (z)

=
∑
j

ln(
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ĉtz
zj
)

=
∑
j

ln(
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We can use the fact that for non-negative si∑
i ln(1 + si) ≥ ln(1 +

∑
i si)

This gives

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(1+ nλ
1− λz

∗
j )

≥ ln(1+ nλ
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In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.
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Lemma 4

If we choose α = 1/4 and n ≥ 4 in Karmarkars algorithm the

point x̂ satisfies

f̂ (x̂) ≤ f̂ ( e
n
)− δ

with δ = 1/10.
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Proof:

Define

g(x) = n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.
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ĉtx
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Similar, the penalty when going from e
n to w increases by

h(w) = pen(w)− pen(
e
n
) = −

∑
j

ln
wj

1
n

where pen(v) = −
∑
j ln(vj).
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We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂)

= [f̂ ( e
n
)− f̂ (z)]

+ h(z)
− h(x)
+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.
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We have

[f̂ (
e
n
)− f̂ (z)] ≥ ln(1+α)

by the previous lemma.

We have

[g(z)− g(x̂)] ≥ 0

since x̂ is the point with minimum cost in the ball, and g is

monotonically increasing with cost.
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For a point in the ball we have

f̂ (w)− (f̂ ( e
n
)+ g(w))h(w)

(The increase in penalty when going from e
n to w).

This is at most β2

2(1−β) with β = nαr .

Hence,

f̂ (
e
n
)− f̂ (x̂) ≥ ln(1+α)− β2

(1− β) .
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Lemma 5

For |x| ≤ β < 1

| ln(1+ x)− x| ≤ x2

2(1− β) .
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This gives for w ∈ B( en , ρ)∣∣∣∣∣∣∑j ln
wj
1/n

∣∣∣∣∣∣

=

∣∣∣∣∣∣∑j ln(
1/n+ (wj − 1/n)

1/n
)−

∑
j
n(wj −

1
n
)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
j

ln(1+
≤nαr<1︷ ︸︸ ︷

n(wj − 1/n))−n(wj −
1
n
)


∣∣∣∣∣∣∣

≤
∑
j

n2(wj − 1/n)2

2(1−αnr)

≤ (αnr)2

2(1−αnr)
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The decrease in potential is therefore at least

ln(1+α)− β2

1− β

with β = nαr = α
√

n
n−1 .

It can be shown that this is at least 1
10 for n ≥ 4 and α = 1/4.
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Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).
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Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).
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