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We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.

Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, xé; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(>; x;)b; = —b; to every constraint. = vector b is 0

If A does not have full column rank we can delete
constraints (or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.



10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
x(0 =2 xW x@) . with

Ctxk < 2—®(L)Ctx0

For k = ®(L). A point x is strictly feasible if x > 0.
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10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
x(0 =2 xW x@) . with

ctxk < 2-0(L) o0
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction c onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). X is the point you reached.
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10K

armarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction c onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). X is the point you reached.

3. Do a backtransformation to transform X into your new point

4

X .

T
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.
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Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

Define ;

Y-1x
-
etY-lx
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define .
Y 'x
Fz:x =
* etY-1x
The inverse function is
Yx
F?l X — —
X etYx
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

Define .
Y 'x
Fy:ixv— ———— .
* etY-1x
The inverse function is
Yx
Fzligx —» —— .
X etYx

Note that x > O in every coordinate. Therefore the above is well
defined.
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Properties

Fz! really is the inverse of Fx:

Y71 Yx %
1. YR -
F;‘c(F;‘cl(X)) = ﬁ = olx =X
ety etyx

because X € A.

Note that in particular every X € A has a preimage (Urbild) under
Fx.
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Properties

X is mapped to e/n
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Properties

A unit vectors e; is mapped to itself:

_— _ t
Fe(e;) = Y~te;  (0,...,0,%;0,...,0)

etY-le; — e!(0,...,0,%;,0,...,0)t
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Properties

All nodes of the simplex are mapped to the simplex:

t
X1 X1 Xn
i (3 --’xn) (&%)
2 (x) = 5o = =i €A
e X tx1 Xn Zl_
e X R Xi
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The Transformation

Easy to check:

> F;l really is the inverse of Fx.
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The Transformation

Easy to check:

v

F;l really is the inverse of Fx.
> X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.
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10 Karmarkars Algorithm

After the transformation we have the problem

min{c'Fz1(x) | AFz1(x) = 0; x € A}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).
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10 Karmarkars Algorithm

After the transformation we have the problem

min{c'Fz!(x) | AFz'(x) = 0; x € A}

B mjn{eth

Ieth=O;xe

cl'Yx  AYx A}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).
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10 Karmarkars Algorithm

After the transformation we have the problem
min{c'Fz!(x) | AFz'(x) = 0; x € A}
I {cth | AYx
h elYx ' elYx

=O;xeA}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).

Since the optimum solution is O this problem is the same as
min{éfx | Ax = 0,x € A}

with ¢ = Yic = Yc and A = AY.
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We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.

» Apply F&, and solve
min{é'x | Ax = 0; x € A}

» The feasible point is moved to the center.

T
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).
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When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}

We are looking for the largest radius 7 such that

B(%,r) m{xletx=1} c A.
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10 Karmarkars Algorithm

This holds for v = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)
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This holds for v = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

This gives v =
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10 Karmarkars Algorithm

This holds for v = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives v =

min{éix | Ax = 0,x € B(e/n,r) N A}
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The Simplex

X3

©Harald Racke

10 Karmarkars Algorithm



10 Karmarkars Algorithm

m EADS Il 10 Karmarkars Algorithm
©Harald Racke



10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).
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Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax =0 or the
constraint x € A.
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax =0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

r-(0)
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10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of
A
o~ (2]

P=1-BYBBY) !B

We use

Then
d =Pé

is the required projection.
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10 Karmarkars Algorithm

We get the new point

forp <.
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10 Karmarkars Algorithm

We get the new point

forp <.

Choose p = oxr with x = 1/4.
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10 Karmarkars Algorithm

Iteration of Karmarkars algorithm:

» Current solution x. Y := diag(x1,...,Xn).
» Transform the problem via Fx(x) = % Let ¢ = Yc, and
A=AY.
» Compute
d = (I-BYBB") 'B)¢ ,
A
where B = ( t).
e
> Set
g=f_p, 4
n ldll

with p = ar withx=1/4andr = 1/yn(n —1).
» Compute Xpew = F5 1 (X).
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The Simplex

X3

©Harald Racke
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Lemma 2
The new point X in the transformed space is the point that
minimizes the cost ¢tx among all feasible points in B(%, p).
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Proof: Let z be another feasible point in B(%,p).
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0,elz=1,elx =1
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Proof: Let z be another feasible point in B(%,p).
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B(x-2z)=0.
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have
B(x-2z)=0.
Further,

(6 —d)t =(-Pé)t
= (BY(BBY)"lB¢)t
— "tBt(BBt)—lB

Hence, we get

E-d'(x-2)=0
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Proof: Let z be another feasible point in B(%,p).

As Az =0, A% =0,elz =1, e!%X = 1 we have
B(x—-2z)=0.

Further,

(6 —d)t =(-Pé)t
= (BY(BBY)"lB¢)t
= ¢tBY(BBY)"1B

Hence, we get

E-d)li(x-2z)=00rét(x-—2z)=d(x-2)
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have

Further,
(e-d)t=(c-po)
= (B'(BB")"'B¢)!
— "tBt(BBt)—lB
Hence, we get

E-d)li(x-2z)=00rét(x-—2z)=d(x-2)

which means that the cost-difference between X and z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.
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But

dt

A s
lall

z)

dt
~lldl

(

g_p:L_z>
n Uldl

T
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But

T

A e _dt(e_pd_z) _dt(e_z)_p
ldll ldll \n " lidll Idll \n
EADS Il 10 Karmarkars Algorithm & E
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But

A e _dt(e_pd_z) _dt(e_z)_p<0
Il dl \n ~ Fldll ldl \n

as % — z is a vector of length at most p.
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But

A e _dt(e_ L_Z) _dt(e_z)_ <0
Id] "l \n " Plan %) Tl \n g
as % — z is a vector of length at most p.
This gives d(X — z) < 0 and therefore éX < ¢z.
& - =
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In order to measure the progress of the algorithm we introduce
a potential function f:

S(x)
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
) =YY
PR
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fex) = () = nin(ex) - YIn(x;)) -
J J J
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fex) = () = nin(ex) - YIn(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke



In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c!x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).
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For a point z in the transformed space we use the potential
function

f(2)
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For a point z in the transformed space we use the potential
function

f(2) = f(Fz'(2))
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For a point z in the transformed space we use the potential
function

Yz
elYz

f(z2):= f(FZH(2) = f( ) = f(Yz)
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For a point z in the transformed space we use the potential
function

f(2) = fF(Fz1(2)) = f(——e

—21 (c Yz

) = f(Yz)

eth
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For a point z in the transformed space we use the potential
function
A 1 _ .
f(2):=f(F; (2)) f(esz) f(Yz)

—21 (C YZ)—Zl —)—zlnxj
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For a point z in the transformed space we use the potential
function

f(2):= fFFEY(2) = f(o-) = f(Y2)

eth

.
=Zln(;Z?)=Zl (—)—Zlnxj
i NE

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.
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For a point z in the transformed space we use the potential
function

Fz) = f(F-‘l(z)) - f(Y—-Z) - f(Y2)
Zl (—) —zlnxJ

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by €.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f& <f(=) -6,

e
n

where 6 is a constant.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f& <f(=) -6,

e
n
where 6 is a constant.

This gives
S (Xnew) < f(x) -6 .
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%,p) N A that has

P L e
f(z)sf(ﬁ)—é

with 6 = In(1 + ).
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%,p) N A that has

- ~e
f(2) Sf(ﬁ) -0
with 6 = In(1 + ).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where éfx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* + X)
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Let z* be the feasible point in the transformed space where éfx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).
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Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke



Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1-0< Az
n

for some positive A < 1.
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Hence,

. 4l
¢lz=(1- A)cta +Actz*

T
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Hence, 0
flz=(1- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.
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Hence,

flz=(1- A)ét% +Aétz*

The optimum cost (at z*) is zero.

Therefore,

m EADS Il 10 Karmarkars Algorithm
©Harald Racke



[T

EADS Il
©Harald Racke

10 Karmarkars Algorithm



The improvement in the potential function is

f(%) - f(2)
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The improvement in the potential function is

C

te otz
f(—)—f(z)—Zln( ) = XI5
i J

n
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T

The improvement in the potential function is

éte ctz
f(*)—f(Z)—Zln( ) — > In(—=

n
fte
n

= Zln(

¢tz

SIEIRN
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The improvement in the potential function is

cty ¢tz
F&) - f@ = 21n< )-S5
i J

Zj
- Zln( étZ 1)
n

= gln(ﬁzj)
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The improvement in the potential function is

A e Ate ctz
f(ﬁ)— f(z) = Zln( 1 Zln(z)
t
—Zln(ét TJ

= %m(ﬁzj)

- Zln(%((l —)\)% +Az$))
J
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T

The improvement in the potential function is

e cte étz
f(;i)—xf(z) EZIn( E;ln(igf)

fte
n

A

—Zhu -f
=%m%ijz

—Zmﬁ%%ﬂl—M%+AzD
j

=>1In(1+
J

*
1A%
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We can use the fact that for non-negative s;

>, In(1 +5;) = In(1 + 3;50)
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We can use the fact that for non-negative s;

> In(1 + ;) = In(1 + X;59)

This gives

A e ~
f(ﬁ) —f(Z)
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We can use the fact that for non-negative s;

Zi In(1 +s;) =In(1 +>;s;)

This gives

na 2

~ e ~
FCY-f2) = gln(n 2]
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We can use the fact that for non-negative s;

Zi In(1 +s;) =In(1 +>;s;)

This gives
naA
-A

~ e ~
fe) - 1@ = %1n(1+ 2

A

n
zln(1+1_A
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In order to get further we need a bound on A:

Xr
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In order to get further we need a bound on A:

o =p
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In order to get further we need a bound on A:

ar =p =z —e/n|
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In order to get further we need a bound on A:

ar =p =llz—e¢/n| = A" —e/n)|
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In order to get further we need a bound on A:

ar =p =llz—¢/nl = [A(z* —¢/n)| < AR
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In order to get further we need a bound on A:

ar =p =llz—¢/nl = [A(z* —¢/n)| < AR
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R=+y(n-1)/n.
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./mn-1)n we have R/r = n — 1 and

A=>ax/(n-1)
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
1 +nL
1-A

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke



In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
no
1+n1—2\21+7n—(x—1
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
no
1+7’l1_A21+m21+0(
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
no
1+7’l1_A21+m21+0(

This gives the lemma.
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Lemma 4
If we choose « = 1/4 and n > 4 in Karmarkars algorithm the
point X satisfies

with 6 = 1/10.
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Proof:

[T
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Proof:

Define

g(x) =

T
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Proof:

Define

étx
gx) = nlnét—g

T
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Proof:

Define

g(x)

~

c'X
nlnAt—e
T

. ;e
n(lnctx—lnctﬁ) .

T
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Proof:
Define

Ctx
Ate
c n

. ;e
n(lnctx—lnctﬁ) .

gx)=nln

This is the change in the cost part of the potential function when
going from the center % to the point x in the transformed space.
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Similar, the penalty when going from % to w increases by
h(w) =pen(w)—pen(— ->In TJ
J n

where pen(v) = -3 ;In(v}).
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We want to derive a lower bound on

a e PR
f(ﬁ)—f(x)
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We want to derive a lower bound on

~ e A ~ @ ~
f(ﬁ) - f(x) = [f(;) - f(2)]
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We want to derive a lower bound on

FE - fx) = [f‘(%) ~ f2)]

+h(z)

S e
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We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) -f(x) = [f(n) f(2)]
+ h(z)
— h(x)
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We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) -f(x) = [f(n) f(2)]
+ h(z)

- h(x)
+[g(z) —g(x)]
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We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) -f(x) = [f(n) f(2)]
+ h(z)

- h(x)
+[g(z) —g(x)]

where z is the point in the ball where f achieves its minimum.
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We have

[f(%) ~f@1=In1+

by the previous lemma.
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We have

[F(£) - f(2)]=In( + )

n
by the previous lemma.

We have
[9(z) —g(x)] =0

since X is the point with minimum cost in the ball, and g is
monotonically increasing with cost.
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For a point in the ball we have

fw) - (f(%) +g(w)h(w)

(The increase in penalty when going from % to w).
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For a point in the ball we have

fw) - (f(%) +g(w)h(w)

(The increase in penalty when going from % to w).

2
This is at most Z(fi—ﬁ) with f = nar.
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For a point in the ball we have

fw) - (f(%) +g(w)h(w)

(The increase in penalty when going from % to w).

2
This is at most 2({;7—13) with f = nar.
Hence,

BZ

e ai
f(ﬁ)—f(x)zln(1+0()— T
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Lemma 5
For|x|<B <1

X2

|IIn(1 +x) — x| <

2(1-p)
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This gives for w € B(3;, p)
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This gives for w € B(

‘Zln

pP)

I/n+(w; —1/n)

‘zl ( 1/n

1
- %n(wj -
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This gives for w € B(5,p)

wj | I/n+(w; —1/n) B 1
‘Zlnl/n B Zl( 1/n ) %n(wj n)
<nar<l
= > ln(1+n(wj—1/n))—n(wj—%)

J
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This gives for w € B(5,p)

n°(w;
S% 2(1 — axnr)

1/n+ (w

i—1/n)

zl ( l/n

> In(1 + n(

J

2(wi—1/n)?

)—Zn(wj—%
j

=nar<l

— 1
wj—1/n)) -n(w; - n)]
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This gives for w € B(5,p)

I/n+(w; —1/n)
B zl ( 1/n )=

|zln1/n
<nar<l
> | In(1 +n(wj —1/n)) -
J
2(wi—1/n)?
J
S% 2(1 — axnr)

(onr)?
—2(1 — anr)

Zn(wj

1
n
n(w; — )]
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The decrease in potential is therefore at least

BZ
1-8

In(1 + x) —

with B = noar = a1

m EADS Il 10 Karmarkars Algorithm
©Harald Racke



The decrease in potential is therefore at least

BZ
1-8

In(1 + x) —

with B = noar = a1

It can be shown that this is at least % form =4 and x =1/4.
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Let x*) be the current point after the k-th iteration, and let
50 = €
n
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
This gives
ctx®)

te
T

nln
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Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.
This gives
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Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nln S5 Zln g Zln% ~k/10
j

< nlnn - k/10
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Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.

This gives
ctx®) _(k 1
nln e lenx;)—Zlnﬁ—k/lo
n J J

<nlnn-k/10
Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx®

e <e <27l
€'
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Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin € X < Zln g Zln% ~k/10
j
< nlnn— k/10

Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx®

Tse_€52_g.
T

Hence, ®(nL) iterations are sufficient. One iteration can be
performed in time O(n3).
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