We want to solve the following linear program:

- min $v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

- **1.** A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- **3.** The optimum solution is 0.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by −1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- ► Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full column rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

We still need to make e/n feasible.

The algorithm computes (strictly) feasible interior points $\bar{x}^{(0)} = \frac{e}{n}, x^{(1)}, x^{(2)}, \dots$ with

 $c^t x^k \leq 2^{-\Theta(L)} c^t x^0$

For $k = \Theta(L)$. A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x} is the point you reached.
- 3. Do a backtransformation to transform \hat{x} into your new point x'.

The Transformation

Let $\bar{Y} = \text{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

I

Define

$$F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1}x}{e^t \bar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto rac{ar{Y}\hat{x}}{e^t ar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

 $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$:

$$F_{\bar{x}}(F_{\bar{x}}^{-1}(\hat{x})) = \frac{\bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}}{e^t \bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}} = \frac{\hat{x}}{e^t \hat{x}} = \hat{x}$$

because $\hat{x} \in \Delta$.

Note that in particular every $\hat{x} \in \Delta$ has a preimage (Urbild) under $F_{\bar{x}}$.

 \bar{x} is mapped to e/n

$$F_{\bar{\mathbf{X}}}(\bar{\mathbf{X}}) = \frac{\bar{Y}^{-1}\bar{\mathbf{X}}}{e^t\bar{Y}^{-1}\bar{\mathbf{X}}} = \frac{e}{e^t e} = \frac{e}{n}$$

A unit vectors e_i is mapped to itself:

$$F_{\bar{x}}(\boldsymbol{e}_{i}) = \frac{\bar{Y}^{-1}\boldsymbol{e}_{i}}{\boldsymbol{e}^{t}\bar{Y}^{-1}\boldsymbol{e}_{i}} = \frac{(0,\ldots,0,\bar{x}_{i},0,\ldots,0)^{t}}{\boldsymbol{e}^{t}(0,\ldots,0,\bar{x}_{i},0,\ldots,0)^{t}} = \boldsymbol{e}_{i}$$

All nodes of the simplex are mapped to the simplex:

$$F_{\bar{\mathbf{X}}}(\mathbf{X}) = \frac{\bar{Y}^{-1}\mathbf{X}}{e^t \bar{Y}^{-1}\mathbf{X}} = \frac{\left(\frac{x_1}{\bar{x}_1}, \dots, \frac{x_n}{\bar{x}_n}\right)^t}{e^t \left(\frac{x_1}{\bar{x}_1}, \dots, \frac{x_n}{\bar{x}_n}\right)^t} = \frac{\left(\frac{x_1}{\bar{x}_1}, \dots, \frac{x_n}{\bar{x}_n}\right)^t}{\sum_i \frac{x_i}{\bar{x}_i}} \in \Delta$$

The Transformation

Easy to check:

- $F_{\bar{\chi}}^{-1}$ really is the inverse of $F_{\bar{\chi}}$.
- \bar{x} is mapped to e/n.
- A unit vectors e_i is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

After the transformation we have the problem

$$\min\{c^{t}F_{\bar{x}}^{-1}(x) \mid AF_{\bar{x}}^{-1}(x) = 0; x \in \Delta\}$$
$$= \min\{\frac{c^{t}\bar{Y}x}{e^{t}\bar{Y}x} \mid \frac{A\bar{Y}x}{e^{t}\bar{Y}x} = 0; x \in \Delta\}$$

This holds since the back-transformation "reaches" every point in Δ (i.e. $F_{\tilde{X}}^{-1}(\Delta) = \Delta$).

Since the optimum solution is 0 this problem is the same as

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in \Delta\}$$

with $\hat{c} = \bar{Y}^t c = \bar{Y}c$ and $\hat{A} = A\bar{Y}$.

We still need to make e/n feasible.

- We know that our LP is feasible. Let \bar{x} be a feasible point.
- Apply F_x, and solve

 $\min\{\hat{c}^t x \mid \hat{A}x = 0; x \in \Delta\}$

• The feasible point is moved to the center.

When computing \hat{x} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},
ho
ight) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le
ho
ight\}$$

We are looking for the largest radius r such that

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^{t}x=1\right\}\subseteq\Delta.$$

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (*r* is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives
$$r = \frac{1}{\sqrt{n(n-1)}}$$
.

Now we consider the problem

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$$

The Simplex

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}x = 0$ or the constraint $x \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Then

$$\hat{d} = P\hat{c}$$

is the required projection.

EADS II ©Harald Räcke

We get the new point

$$\hat{x}(\rho) = \frac{e}{n} - \rho \frac{\hat{d}}{\|d\|}$$

for $\rho < r$.

Choose $\rho = \alpha r$ with $\alpha = 1/4$.

Iteration of Karmarkars algorithm:

- Current solution \bar{x} . $\bar{Y} := \text{diag}(\bar{x}_1, \dots, \bar{x}_n)$.
- Transform the problem via $F_{\bar{X}}(x) = \frac{\bar{Y}^{-1}x}{e^t\bar{Y}^{-1}x}$. Let $\hat{c} = \bar{Y}c$, and $\hat{A} = A\bar{Y}$.
- Compute

$$d = (I - B^t (BB^t)^{-1}B)\hat{c} ,$$

where
$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$
.

$$\hat{x} = \frac{e}{n} - \rho \frac{d}{\|d\|} ,$$

with $\rho = \alpha r$ with $\alpha = 1/4$ and $r = 1/\sqrt{n(n-1)}$.

• Compute
$$\bar{x}_{\text{new}} = F_{\bar{x}}^{-1}(\hat{x})$$
.

The Simplex

Lemma 2

The new point \hat{x} in the transformed space is the point that minimizes the cost $\hat{c}^t x$ among all feasible points in $B(\frac{e}{n}, \rho)$.

Proof: Let *z* be another feasible point in $B(\frac{e}{n}, \rho)$.

As
$$\hat{A}z = 0$$
, $\hat{A}\hat{x} = 0$, $e^t z = 1$, $e^t \hat{x} = 1$ we have
 $B(\hat{x} - z) = 0$.

Further,

$$\begin{aligned} (\hat{c} - d)^t &= (\hat{c} - P\hat{c})^t \\ &= (B^t (BB^t)^{-1} B\hat{c})^t \\ &= \hat{c}^t B^t (BB^t)^{-1} B \end{aligned}$$

Hence, we get

$$(\hat{c} - d)^t (\hat{x} - z) = 0$$
 or $\hat{c}^t (\hat{x} - z) = d^t (\hat{x} - z)$

which means that the cost-difference between \hat{x} and z is the same measured w.r.t. the cost-vector \hat{c} or the projected cost-vector d.

EADS II ©Harald Räcke

But

$$\frac{d^t}{\|d\|} (\hat{x} - z) = \frac{d^t}{\|d\|} \left(\frac{e}{n} - \rho \frac{d}{\|d\|} - z\right) = \frac{d^t}{\|d\|} \left(\frac{e}{n} - z\right) - \rho < 0$$

as $\frac{e}{n} - z$ is a vector of length at most ρ .

This gives $d(\hat{x} - z) \le 0$ and therefore $\hat{c}\hat{x} \le \hat{c}z$.

In order to measure the progress of the algorithm we introduce a potential function f:

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

- The function f is invariant to scaling (i.e., f(kx) = f(x)).
- ► The potential function essentially measures cost (note the term $n \ln(c^t x)$) but it penalizes us for choosing x_j values very small (by the term $-\sum_j \ln(x_j)$; note that $-\ln(x_j)$ is always positive).

For a point z in the transformed space we use the potential function

$$\begin{split} \hat{f}(z) &\coloneqq f(F_{\bar{x}}^{-1}(z)) = f(\frac{\bar{Y}z}{e^t\bar{Y}z}) = f(\bar{Y}z) \\ &= \sum_j \ln(\frac{c^t\bar{Y}z}{\bar{x}_j z_j}) = \sum_j \ln(\frac{\hat{c}^tz}{z_j}) - \sum_j \ln\bar{x}_j \end{split}$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore the additive term above. Then f and \hat{f} have the same form; only c is replaced by \hat{c} .

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f} . This means

$$\hat{f}(\hat{x}) \leq \hat{f}(\frac{e}{n}) - \delta$$
,

where δ is a constant.

This gives

$$f(\bar{x}_{\text{new}}) \le f(\bar{x}) - \delta$$
.

Lemma 3 There is a feasible point z (i.e., $\hat{A}z = 0$) in $B(\frac{e}{n}, \rho) \cap \Delta$ that has

$$\hat{f}(z) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = \ln(1 + \alpha)$.

Note that this shows the existence of a good point within the ball. In general it will be difficult to find this point.

Let z^* be the feasible point in the transformed space where $\hat{c}^t x$ is minimized. (Note that in contrast \hat{x} is the point in the intersection of the feasible region and $B(\frac{e}{n}, \rho)$ that minimizes this function; in general $z^* \neq \hat{x}$)

 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

The point z we want to use lies farthest in the direction from $\frac{e}{n}$ to z^* , namely

$$z = (1 - \lambda)\frac{e}{n} + \lambda z^*$$

for some positive $\lambda < 1$.

Hence,

$$\hat{c}^t z = (1-\lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

The optimum cost (at z^*) is zero.

Therefore,

$$\frac{\hat{c}^t \frac{e}{n}}{\hat{c}^t z} = \frac{1}{1 - \lambda}$$

The improvement in the potential function is

$$\begin{split} \hat{f}(\frac{e}{n}) - \hat{f}(z) &= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}}) \\ &= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}) \\ &= \sum_{j} \ln(\frac{n}{1-\lambda} z_{j}) \\ &= \sum_{j} \ln(\frac{n}{1-\lambda} ((1-\lambda)\frac{1}{n} + \lambda z_{j}^{*})) \\ &= \sum_{j} \ln(1 + \frac{n\lambda}{1-\lambda} z_{j}^{*}) \end{split}$$

We can use the fact that for non-negative s_i

 $\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(1 + \frac{n\lambda}{1 - \lambda} z_{j}^{*})$$
$$\geq \ln(1 + \frac{n\lambda}{1 - \lambda})$$

In order to get further we need a bound on λ :

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}$$
. Since $r = 1/\sqrt{(n-1)n}$ we have $R/r = n-1$ and $\lambda \ge \alpha/(n-1)$

$$1 + n \frac{\lambda}{1 - \lambda} \ge 1 + \frac{n \alpha}{n - \alpha - 1} \ge 1 + \alpha$$

This gives the lemma.

Then

Lemma 4

If we choose $\alpha = 1/4$ and $n \ge 4$ in Karmarkars algorithm the point \hat{x} satisfies

$$\hat{f}(\hat{x}) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = 1/10$.

Proof:

Define

$$g(x) = n \ln \frac{\hat{c}^t x}{\hat{c}^t \frac{e}{n}}$$
$$= n(\ln \hat{c}^t x - \ln \hat{c}^t \frac{e}{n}) .$$

This is the change in the cost part of the potential function when going from the center $\frac{e}{n}$ to the point x in the transformed space.

Similar, the penalty when going from $\frac{e}{n}$ to w increases by

$$h(w) = \operatorname{pen}(w) - \operatorname{pen}(\frac{e}{n}) = -\sum_{j} \ln \frac{w_{j}}{\frac{1}{n}}$$

where $pen(v) = -\sum_j ln(v_j)$.

We want to derive a lower bound on

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}) = [\hat{f}(\frac{e}{n}) - \hat{f}(z)] + h(z) - h(x) + [g(z) - g(\hat{x})]$$

where z is the point in the ball where \hat{f} achieves its minimum.

We have

$$[\hat{f}(\frac{e}{n}) - \hat{f}(z)] \ge \ln(1 + \alpha)$$

by the previous lemma.

We have

$$[g(z) - g(\hat{x})] \ge 0$$

since \hat{x} is the point with minimum cost in the ball, and g is monotonically increasing with cost.

For a point in the ball we have

$$\hat{f}(w) - (\hat{f}(\frac{e}{n}) + g(w))h(w)$$

(The increase in penalty when going from $\frac{e}{n}$ to w).

This is at most
$$\frac{\beta^2}{2(1-\beta)}$$
 with $\beta = n\alpha r$.
Hence,

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}) \ge \ln(1+\alpha) - \frac{\beta^2}{(1-\beta)} \ .$$

Lemma 5

For $|x| \le \beta < 1$

$$|\ln(1+x) - x| \le \frac{x^2}{2(1-\beta)}$$
.

This gives for $w \in B(\frac{e}{n}, \rho)$

$$\begin{aligned} \left| \sum_{j} \ln \frac{w_j}{1/n} \right| &= \left| \sum_{j} \ln(\frac{1/n + (w_j - 1/n)}{1/n}) - \sum_{j} n(w_j - \frac{1}{n}) \right| \\ &= \left| \sum_{j} \left[\ln(1 + \overbrace{n(w_j - 1/n)}^{\leq n\alpha r < 1}) - n(w_j - \frac{1}{n}) \right] \right| \\ &\leq \sum_{j} \frac{n^2(w_j - 1/n)^2}{2(1 - \alpha n r)} \\ &\leq \frac{(\alpha n r)^2}{2(1 - \alpha n r)} \end{aligned}$$

The decrease in potential is therefore at least

$$\ln(1+\alpha) - \frac{\beta^2}{1-\beta}$$

with $\beta = n\alpha r = \alpha \sqrt{\frac{n}{n-1}}$.

It can be shown that this is at least $\frac{1}{10}$ for $n \ge 4$ and $\alpha = 1/4$.

Let $\bar{x}^{(k)}$ be the current point after the k-th iteration, and let $\bar{x}^{(0)} = \frac{e}{n}$.

Then
$$f(\bar{x}^{(k)}) \le f(e/n) - k/10$$
.
This gives

$$n\ln\frac{c^t\bar{x}^{(k)}}{c^t\frac{e}{n}} \le \sum_j \ln\bar{x}^{(k)}_j - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \quad .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $O(n^3)$.

EADS II © Harald Räcke