10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A= {x e R" | elx =1,x = 0} with e! = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, xé; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(>; x;)b; = —b; to every constraint. = vector b is 0

If A does not have full column rank we can delete
constraints (or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.



10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
x( =2 xW x2)  with

ctxk < 2-0(L) o0
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction c onto the feasible
region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). X is the point you reached.

3. Do a backtransformation to transform X into your new point

4

X .
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define o1y
Feix etY-1x
The inverse function is
Pl g Yx

e —
X etYx

Note that x > 0 in every coordinate. Therefore the above is well
defined.
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Properties

Fz! really is the inverse of Fx:

YL %

“1/n V% N

Fe(Fel(%) = —&X* - = - %

X oty-1 Y% elx
elYx

because X € A.

Note that in particular every X € A has a preimage (Urbild) under
Fx.
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Properties

X is mapped to e/n
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Properties

A unit vectors e; is mapped to itself:

¥ les  (0,...,0,%,0,...,00t
Fele = =1, = ot(0,....0.%,,0,....00 ~ &
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Properties

All nodes of the simplex are mapped to the simplex:

=N (4 Ln) <& xi)t
e - ’)_( X_‘l,"")_(n
Fe(x) = = = ! n = =
elyY-lx et(ﬁ Xn>t 2i%
1 Xn i
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The Transformation

Easy to check:

v

F);l really is the inverse of Fx.
» X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

v
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10 Karmarkars Algorithm

After the transformation we have the problem
min{c'Fz!(x) | AFz'(x) = 0; x € A}
_ mi {cth | AYx
B elYx etYx

=0;X€A}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).

Since the optimum solution is O this problem is the same as
min{éfx | Ax = 0,x € A}

with ¢ = Yic = Yc and A = AY.
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Tt

We still need to make e/n feasible.
» We know that our LP is feasible. Let X be a feasible point.
» Apply Fx, and solve
min{é'x | Ax = 0; x € A}

» The feasible point is moved to the center.
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

e e
<n p) {xe | 11x <p

We are looking for the largest radius » such that

B(%,r)m{xletle};&
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10 Karmarkars Algorithm

This holds for v = ||, — (e —e1)5=7ll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives v =

min{éix | Ax = 0,x € B(e/n,r) N A}
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The Simplex

EADS Il
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of
A
B = ot

P=1-BY(BB) 1B

We use

Then
d = Pé¢

is the required projection.
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10 Karmarkars Algorithm

We get the new point

for p <.

Choose p = oxr with x = 1/4.
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10 Karmarkars Algorithm

Iteration of Karmarkars algorithm:

» Current solution x. Y := diag(x1,...,Xn).
» Transform the problem via Fx(x) = % Let ¢ = Yc, and
A=AY.
» Compute
d = (I-BYBB") 'B)é ,
A
where B = ( t).
e
> Set
g=f_p, 4
n ldll

with p = ar withx=1/4andr = 1/yn(n —1).
» Compute Xpew = F5 1 (X).
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The Simplex

EADS Il
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Lemma 2
The new point X in the transformed space is the point that
minimizes the cost ¢tx among all feasible points in B(%, p).
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Proof: Let z be another feasible point in B(%,p).
As Az =0, A% =0, elz =1, e!X = 1 we have
B(x-2z)=0.
Further,
(6 —ad)t =(-pré)t
= (B"(BB")"'Bé)!
— "tBt(BBt)—lB
Hence, we get

E-d)li(x-2z)=00rét(x-—2z)=d(x-2)

which means that the cost-difference between x and z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.
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But

a4 e _dt(e_pd_z) _dt(e_z)_p<0
4l dl \n ~ Fldll Idl \n

as % — z is a vector of length at most p.

This gives d(X — z) < 0 and therefore éX < ¢z.
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c!x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).
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For a point z in the transformed space we use the potential
function

f(2):= f(Fz l(z)_f(etY = f(Yz2)

Zl (—)—Zlnxj

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by €.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f& <f(=) -6,

e
n
where 6 is a constant.

This gives
S (Xnew) < f(x) =6 .
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

- ~e
f(2) Sf(;) -0
with 6 = In(1 + &).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1-0< Az
n

for some positive A < 1.
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Hence, o
flz=(01- A)c”tﬁ +Aétz*

The optimum cost (at z*) is zero.

Therefore,
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The improvement in the potential function is

Ate

F&)-fe Zln( f)—zl
t J
_Zln(“ 'T

= %ln(mzj)

= Yn(; (1 —A)% +Az$))
J

*
zj)

:%1n(1+1_A
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We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives
naA
—-A

~ e ~
fe) - 1@ = %ln(l 132

A

n
zln(1+1_A

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

231



In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R=+(n-1)/n.Sincer =1/,/m-1)n we have R/r = n —1 and
A=>ax/(n-1)
Then
no
1+1’l1_;\21+m21+0(

This gives the lemma.
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Lemma 4
If we choose « = 1/4 and n > 4 in Karmarkars algorithm the
point X satisfies

with 6 = 1/10.
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Proof:
Define

Ctx
Ate
c n

nnétx —mnétly .
n

nln

g(x)

This is the change in the cost part of the potential function when
going from the center % to the point x in the transformed space.
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Similar, the penalty when going from % to w increases by
e wij
h(w) = pen(w) —pen(_) = — ZIHTJ
n

where pen(v) = - > ;In(v;).
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We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) - f(xX) = [f(n) f(2)]
+ h(z)

- h(x)
+[g(z) —g(x)]

where z is the point in the ball where f achieves its minimum.
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We have

[F(£) - f(2)]=In( + )

n
by the previous lemma.

We have
[9(z) —g(xX)]=0

since X is the point with minimum cost in the ball, and g is
monotonically increasing with cost.
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For a point in the ball we have

Ffaw) - (f(%) + gw)h(w)

. . - e
(The increase in penalty when going from - to w).

2
This is at most 2({;7—16) with B = nar.
Hence,

BZ

~ e 2 A
f(ﬁ)—f(X)zln(lﬁth)— T
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Lemma 5
For|x|<B <1

©Harald Racke
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|IIn(1 +x) — x| <
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This gives for w € B(5,p)

I/n+(w; —1/n)

- 1
- Zl ( 1/n )—%n(wj—n)|

‘zlnl/n

- n
J

<nar<l 1
> In(l +n(wj - 1/n)) -n(w;j — —)

2(wj — 1/n)?
= % 2(1 — anr)

(onr)?
~ 2(1 - anr)
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The decrease in potential is therefore at least

BZ
1-8

In(1 + ) —

with B = nar = /57

It can be shown that this is at least %0 form =4 and x =1/4.
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Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin &% <Zm*” Zm%—wm
j
< nlnn - k/10

Choosing k = 10n(£ + Inn) with £ = ©(L) we get

ctxk)

?Se_{)ﬁz_#.
Cn

Hence, ©®(nL) iterations are sufficient. One iteration can be
performed in time O(n3).
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