10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A= {x ¢ R" |efx =1,x =0} withel = (1,...,1)
denotes the standard simplex in R".

Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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10 Karmarkars Algorithm
Suppose you start with max{cix | Ax = b;x = 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

» Add a new variable pair xy, xé (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

» Add —(3; x;)b; = —b; to every constraint. = vector b is 0

» If A does not have full column rank we can delete
constraints (or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.

10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
x 0 = %,x(”,x(z),... with

clxk <270 ty0

For k = ©(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can

“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible
region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). X is the point you reached.

3. Do a backtransformation to transform X into your new point

’

X .

m EADS Il 10 Karmarkars Algorithm
©Harald Racke




The Transformation Properties

Let Y = diag(x) the diagonal matrix with entries X on the

diagonal. Fz! really is the inverse of Fx:

Define o g1 7% i

Y 'x -1/% elYX X A
X Fx (F; =—0o1X = -
of
The inverse function is R
i because x € A.
F—l . 5& Y)%
x elYx -’ Note that in particular every X € A has a preimage (Urbild) under
Fx.

Note that X > O in every coordinate. Therefore the above is well

defined.
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Properties Properties

X is mapped to e/n A unit vectors e; is mapped to itself:

_ Yﬁlei B (0,...,0,)_Ci,0,...,0)t _
Fx(ei) = etY-le;  et(0,...,0,%,0,...,0)t éi

Fx(X) = —=—==
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Properties

All nodes of the simplex are mapped to the simplex:

i (Bee®)  (@een)
B 3 X X C\Eo R,
FX(X) B elY-1x B X an )\t B Z& €A
etz i i %
(o) 3
m EADS Il 10 Karmarkars Algorithm
©Harald Ricke 210

The Transformation

Easy to check:

v

F7! really is the inverse of Fx.

> X is mapped to e/n.

v

A unit vectors e; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.

EADS 11 10 Karmarkars Algorithm
©Harald Ricke

211

10 Karmarkars Algorithm

After the transformation we have the problem

min{ctFz1(x) | AFz1(x) = 0; x € A}
_(ctYx | AYx
= mm{

— — =0, x €A
eth|eth 0; x }

This holds since the back-transformation “reaches” every point in
A (i.e. FH(A) = A).

Since the optimum solution is 0 this problem is the same as
min{étx | Ax = 0,x € A}

with é = Ylc = Ycand A = AY.
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We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.
» Apply F%, and solve

min{étx | Ax = 0; x € A}

» The feasible point is moved to the center.
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

p() = fremt e <o)

We are looking for the largest radius + such that

B(%,r)m{xletle}gA.
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10 Karmarkars Algorithm

This holds for » = II% — (e — el)ﬁll. (r is the distance between
the center e¢/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

This gives ¥ = NCTE

Now we consider the problem

min{é'x | Ax = 0,x € B(e/n,r) N A}
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The Simplex

X3

m EADS Il 10 Karmarkars Algorithm
©Harald Racke 216

10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

o (3

P=1-B'BBY) !B

We use
Then
d=P¢

is the required projection.
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10 Karmarkars Algorithm

We get the new point

x(p) = ¢ P d
n = ldll
forp <r.
Choose p = axr with @ = 1/4.
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10 Karmarkars Algorithm

Iteration of Karmarkars algorithm:

» Current solution x. Y := diag(x1,...,Xn).
» Transform the problem via Fz(x) = % Let ¢ = Y¢, and
A=AY.
» Compute
d=(I-B'(BB")"'B)é ,
A
where B = ( t).
e
> Set
2=l_, 4
n Il ’

with p = ar withx=1/4andr =1/yn(n-1).
» Compute Xpew = Fz 1 (X).
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The Simplex

X3

10 Karmarkars Algorithm
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Lemma 2
The new point X in the transformed space is the point that
minimizes the cost ¢tx among all feasible points in B(%, p).
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Proof: Let z be another feasible point in B(%,p).
As Az =0, AX =0,etz=1,e!'%X = 1 we have
B(x-2z)=0.
Further,
(e —d)t = (-Pe)t
= (B'(BB")"'Bé)!
— "tBt(BBt)—lB
Hence, we get

- (X-z)=00rét(Xx-2z)=d(x-2)

which means that the cost-difference between X and z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.
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But

PSP :d;(g_pi_2> :d;(g_z)_pd)
Il lal \n =~ ] Idl \n

e .
as ,; — z is a vector of length at most p.

This gives d(X — z) < 0 and therefore ¢X < ¢z.
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©Harald Racke

223

In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fe) = XIS = nin(e'x) = Yin(x;) -
J J j

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nln(ctx)) but it penalizes us for choosing x; values
very small (by the term — 3 ;In(x;); note that —In(x;) is
always positive).
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For a point z in the transformed space we use the potential

function
@)= fF @) = F2) = f(V2)
clyz Gtz
= > In(= )=>In(—) - > Inx;

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by €.
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©Harald Racke

225




The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f& <f(5)-6,

e
n
where § is a constant.

This gives
S (Xnew) = f(x) -6 .
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

N A e
f(2) Sf(ﬁ) -0
with 6 = In(1 + &).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where ¢t x
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1-0)<+az*
n

for some positive A < 1.
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Hence, 0
flz=(01- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.

Therefore,
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The improvement in the potential function is

,\te

F&)-f@ = Zln( ")—Zln(
S
:%:h’l( AtZ E)

1
= YIn( (1= 2) - +Az))
J

- *
—%ln(1+ %)
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We can use the fact that for non-negative s;

Ziln(l +5) =2In(1 + 3;s;)

This gives
A E B A~ _ *
fC)—F2 gln(lJrl_AzJ)
naA
>In(1 + 1_/\)
EADS 11
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In order to get further we need a bound on A:

ar =p=lz—e/n| =[A(z* —¢/n)| <AR
Here R is the radius of the ball around % that contains the whole
simplex.

=4/(n-1)/n. Since r =1/,/(n—-1)n we have R/r =1 — 1 and

A>o/(n-1)

Then

This gives the lemma.
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Lemma 4

If we choose «x = 1/4 and n = 4 in Karmarkars algorithm the
point X satisfies

o . e
f(x) fﬁ
with 6 = 1/10.
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Proof:

Define

Ctx
e
c n

nln

g(x)

n(lnétx — lnétg) }
n

This is the change in the cost part of the potential function when
going from the center % to the point x in the transformed space.
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. . . e .
Similar, the penalty when going from - to w increases by

h(w) = pen(w) —pen(%) = —zln
J

where pen(v) = — Ej In(v;).
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We want to derive a lower bound on
~ e ~ N ~ e ~
f(ﬁ) - f(x) = [f(ﬁ) - f(2)]
+ h(z)
- h(x)
+[g(z) —g(x)]

where z is the point in the ball where f achieves its minimum.
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We have e i
[f(ﬂ) - f(2)1=In(1 + &)

by the previous lemma.

We have
[9(z) —g(x)] =0

since X is the point with minimum cost in the ball, and g is

monotonically increasing with cost.
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For a point in the ball we have

A ~e

fw) - (f(ﬁ) +9w))h(w)
(The increase in penalty when going from % to w).

This is at most z(fiiﬁ) with = nor.
Hence,

EZ
1-p)

f(%)—f(fc) > In(l + o) —
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Lemma 5
For|x|<B<1

X2
[In(1 +x) — x| < =757 .
2(1-8)
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This gives for w € B(;, p)

wi| I/m+ (wj—-1/n) B ,_l
‘Zlnl/n = |2.In 1/n ) -2 mwi -3
J J J
<nar<l
= > 1n(1+n(wj—1/n))—n(wj—%)
J
n?(wj - 1/n)?
_Z 2(1 — anr)
(anr)?
21 - xnr)
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The decrease in potential is therefore at least

BZ
1-8

In(1 + &) —

with B = nar = &y/;.

It can be shown that this is at least 11—0 form>=4and x =1/4.
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Let xk) be the current point after the k-th iteration, and let
x0) = €
L

Then f(x®)) < f(e/n) — k/10.
This gives

ctx k) _ (k) 1
nlnct7S21an —%:lna—k/lo

n J

<nlnn-k/10
Choosing k = 10n (€ + Inn) with £ = (L) we get

ctx®)

e <et<2t,
€

Hence, ®(nL) iterations are sufficient. One iteration can be
performed in time O (n3).
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