Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of
a,b = 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;aij = cj then >; y;b; will be an
upper bound.
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Duality

Definition 2
Let z = max{cix | Ax = b,x = 0} be a linear program P (called
the primal linear program).
The linear program D defined by
w =min{bty | Aly = ¢,y =0}

is called the dual problem.
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Duality

Lemma 3
The dual of the dual problem is the primal problem.

Proof:
» w =min{bly | Aly > ¢,y = 0}
» w=max{-bly | -Aly < —¢,y =0}

The dual problem is
» z=min{-cix | —Ax = —-b,x = 0}

» z =max{cix | Ax = b,x = 0}
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Weak Duality

Let z = max{cix | Ax < b,x = 0} and
w = min{bty | Aty > ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

y is dual feasible, iff y € {y | Aty > ¢,y = 0}.

Theorem 4 (Weak Duality)
Let X be primal feasible and let y be dual feasible. Then

clx<z<w<b'y.
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Weak Duality

Aty > ¢ = XTAYY > Xte (X = 0)
AR <b = YA < $th (3 = 0)

This gives

¢l < PLAX < by .

Since, there exists primal feasible X with ¢!X = z, and dual
feasible  with bly = w we get z < w.

If P is unbounded then D is infeasible.
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The following linear programs form a primal dual pair:

z =max{cix | Ax = b,x = 0}
w =min{b'y | Aly > c}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.

m EADS II 5 Duality
©Harald Racke

69



Proof

Primal:

max{cix | Ax = b,x =0}

=max{cix | Ax <b,-Ax < -b,x = 0}

= max{cix | {i]x < [_bb},x > 0}

Dual:

min{[bt —bt]y | [At —Al]y > ¢,y = 0}
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

bty* — (Ax*)ty* — (ABxigk)ty*
(ABXB) (ABI)tCB = (X tAB(ABl) CB

=CX

Hence, the solution is optimal.
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Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

z¥ =w*
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Lemma 6 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{ f(x) : x € X} exists.
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Lemma 7 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)(x —x*) <0.
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Proof of the Projection Lemma

Define f(x) = |y — x|

We want to apply Weierstrass but X may not be bounded.
X # (0. Hence, there exists x’ € X.

Define X' = {x e X | [ly — x|l < [l — x'|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

\4

v

v

v

v
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*I12 < [ly — x* —e(x — x*)||?

=y — x*II? + €llx — x*)1? - 2e(y — x*) (x — x*)

Hence, (v — x*)t(x — x*) < Jellx — x*|2.

Letting € — 0 gives the result.
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Theorem 8 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: atx = o}

where a € R™, x € R that separates y from X. (aty < «;
alx = « forall x € X)
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to y in X.

» By previous lemma (y — x*){(x —x*) <0 for all x € X.
» Choose a = (x* —y) and & = alx*.

» Forx € X:al(x —x*) =0, and, hence, atx > «.

v

Also, aly =al(x* —a) = x - |lal® < «

I:H={x|atx=(x}
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Lemma 9 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax eR"withAx =b,x >0
2. 3y e R™ with Ay >0, bty <0
Assume X satisfies 1. and ¥ satisfies 2. Then
0>y'h=y'Ax =0

Hence, at most one of the statements can hold.
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Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with Aty >0, bty < 0.

Let y be a hyperplane that separates b from S. Hence, y'b < «
and y!'s > aforall s € S.

0eS=>ua=<0=yh<0

ytAx > « for all x > 0. Hence, y'A > 0 as we can choose x
arbitrarily large.



Lemma 10 (Farkas Lemma; different version)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix eR" withAx <b,x =0
2. Ay e R™ with Aty >0,bty <0,y >0

Rewrite the conditions:

1. 3x € R™ with [AI]-[)SC]=b,sz,szO

At
2. 3yemeith[I]yzo,bfy<o
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Proof of Strong Duality

P: z =max{cix | Ax <b,x =0}

D: w =min{bty | Aty > ¢,y =0}

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

dx e R™ dy e R";z e R
st. Ax < b s.it. Aty —cz
—clx < -« ybt — xz
x = 0 Y,z

vV A IV

S

From the definition of & we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy eRM™;zeR

sit. Aty —cz = 0
ybt—axz < 0
v,z = 0

If the solution 7y, z has z = 0 we have that

dy e R™
s.t. Aly > 0
ybt < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.
We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but by < . This means that
w < .

m EADS Il 5 Duality
©Harald Racke 85



Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let A e Q™" b e Q™ c e Q" ax e Q. Does there exist
xeQ"st. Ax=b,x=20,clx = x?

Questions:
> Is LP in NP?
> |Is LP in co-NP? yes!
> IS LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraint and that it has dual cost < «.
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Complementary Slackness

Lemma 13
Assume a linear program P = max{ctx | Ax < b;x = 0} has
solution x* and its dual D = min{bty | A'y > ¢;y > 0} has
solution y*.

1. Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than xJ’.k = 0.

3. If y} > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than y; = 0.

If we say that a variable x}k (¥{) has slack if x;‘ >0 (> 0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

clx* < y*Ax* < bty*
Because of strong duality we then get
Ctx* — y*tAx* — bty*

This gives e.g.

>(y'A - ct)jxf =0

J
From the constraint of the dual it follows that y'A > ct. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (¥'A —c');j > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €p,
and &y, respectively.
The profit increases to max{ctx | Ax < b + &x > 0}. Because of
strong duality this is equal to

min (bt +€l)y
s.t. Aly
y

2%
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Eiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

max 13a + 23b

s.t. 5a+ 15b + s, =480
4a + 4b + sp =160
35a + 20b + sm = 1190

a, b,sc,Sn,Ssm=0

beer

--T ale

The change in profit when increasing hops by one unit is
—Cp=—-Cp+ CEAEIA*]@ = CéAEleh.
\—,—J

y*



Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 14
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R{ that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V\ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 15
The value of an (s, t)-flow f is defined as

val(f) = Zfsx - fos .

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max 2z Joz = 22 fzs
st. V(zyw) eV xV fow < Czw lzw
Vw#s,t X, fow—2zfwz = 0 Pw
fow = O
min 2 xy) Cxytxy
s.t. fxy X,y £5,8) 1 1xy—1px+lpy = O
fsy (v #5,0): 1 +1py = 1
I (G2 32 8,) ¢ 10y s—1px > -1
Sy (¥ #5,t): 18ty +1py = O
fxt (x #=5s,1): 10y —1py > 0
St : 105 > 1
Sis: 10 > -1
Lsy > 0
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LP-Formulation of Maxflow

Tt

min
s.t.

Sy (X, ¥ = 5,t):

fsy (y #s,t):
fxs (x =5s,t):
Sty (v #5,0):
fxt (x =5s,t):
Soe:
Sts:

> xy) Exylxy

14— 1+
10y s—1px+
lgty— 0+
10y —1py+
10— 1+
10— 0+

1y —1px+1py

Ipy
1
Ipy
0
0
1

‘gxy

vV IV IV IV IV IV IV

\%

S O O © O O ©o O
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LP-Formulation of Maxflow

min 2 (xy) Cxylxy
s.t. fxy X,y £5,8): 1xy—1px+lp, = O
Ssy (¥ #=5,t): 14sy— ps+lpy, = O
Jxs (x #s,t): 10xs—1px+ ps = O
Sty (¥ =5,0): 14ty— pi+lpy, = 0O
fxt (x #58,t): 10xi—1px+ pr = 0
Sst: s~ ps+ pr = 0
Sis: is— pi+ ps = 0
byy =2 0

with p; =0 and p; = 1.
EADS Il 5 Duality
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LP-Formulation of Maxflow

min 2xy) Cxylxy

st fxy: 1lxy—1px+lpy, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value p, for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < €y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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