Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

Duality

Definition 2

Let $z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

is called the dual problem.

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

•
$$w = \max\{-b^t \gamma \mid -A^t \gamma \leq -c, \gamma \geq 0\}$$

The dual problem is

 $z = \min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$

$$z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$$

Weak Duality

Let $z = \max\{c^t x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^t y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^t \hat{x} \leq z \leq w \leq b^t \hat{y}$$
 .

Weak Duality

$$A^{t}\hat{\mathcal{Y}} \ge c \Rightarrow \hat{x}^{t}A^{t}\hat{\mathcal{Y}} \ge \hat{x}^{t}c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

The following linear programs form a primal dual pair:

$$z = \max\{c^{t}x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^{t}y \mid A^{t}y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Proof

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{\begin{bmatrix} b^t & -b^t \end{bmatrix} y \mid \begin{bmatrix} A^t & -A^t \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^t & -b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t & -A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^t \cdot (y^+ - y^-) \mid A^t \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^t y' \mid A^t y' \ge c, y' \ge 0\right\}$$

5 Duality

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t (A_B^{-1})^t c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{t} c_{B} \text{ is solution to the dual } \min\{b^{t} y | A^{t} y \ge c\}.$ $b^{t} y^{*} = (Ax^{*})^{t} y^{*} = (A_{B} x_{B}^{*})^{t} y^{*}$ $= (A_{B} x_{B}^{*})^{t} (A_{B}^{-1})^{t} c_{B} = (x_{B}^{*})^{t} A_{B}^{t} (A_{B}^{-1})^{t} c_{B}$ $= c^{t} x^{*}$

Hence, the solution is optimal.

Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

Lemma 6 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

Lemma 7 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^t (x - x^*) \le 0$.

Proof of the Projection Lemma

• Define
$$f(x) = ||y - x||$$
.

- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^t (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^t (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 8 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^t x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^t y < \alpha;$ $a^t x \ge \alpha$ for all $x \in X$)

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1.
$$\exists x \in \mathbb{R}^n$$
 with $Ax = b, x \ge 0$

2.
$$\exists y \in \mathbb{R}^m$$
 with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^t b < \alpha$ and $y^t s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^t b < 0$

 $y^t A x \ge \alpha$ for all $x \ge 0$. Hence, $y^t A \ge 0$ as we can choose x arbitrarily large.

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1.
$$\exists x \in \mathbb{R}^n$$
 with $Ax \leq b$, $x \geq 0$

2. $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^{n}$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\begin{bmatrix} A^{t} \\ I \end{bmatrix} y \ge 0, b^{t} y < 0$

Proof of Strong Duality

$$P: z = \max\{c^t x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^t \gamma \mid A^t \gamma \ge c, \gamma \ge 0\}$$

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w .

Proof of Strong Duality

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$				$\exists y \in \mathbb{R}^m; z \in \mathbb{R}$	
s.t.	Ax	\leq	b	s.t. $A^t y - cz \ge$	0
	$-c^t x$	\leq	$-\alpha$	$yb^t - \alpha z <$	
	X	\geq	0	$\mathcal{Y}, Z \geq$	0

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$$\exists y \in \mathbb{R}^{m} ; z \in \mathbb{R} \\ s.t. \quad A^{t}y - cz \geq 0 \\ yb^{t} - \alpha z < 0 \\ y, z \geq 0 \\ \end{cases}$$

If the solution y, z has z = 0 we have that

$$\exists y \in \mathbb{R}^m \\ s.t. \quad A^t y \ge 0 \\ y b^t < 0 \\ y \ge 0$$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma. Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but $b^t y < \alpha$. This means that $w < \alpha$.

Fundamental Questions

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter α . Suppose that $\alpha > opt(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraint and that it has dual cost < α.</p>

EADS II ©Harald Räcke

Complementary Slackness

Lemma 13

Assume a linear program $P = \max\{c^t x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^t y \mid A^t y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in D is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in P is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

EADS II ©Harald Räcke

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Because of strong duality we then get

$$c^t x^* = y^{*t} A x^* = b^t y^*$$

This gives e.g.

$$\sum_{j} (y^t A - c^t)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^t A \ge c^t$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^t A - c^t)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

EADS II © Harald Räcke

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

 $\max 13a + 23b$ s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min	480 <i>C</i>	+	160H	+	1190M	
s.t.	5 <i>C</i>	+	4H	+	35M	≥ 13
	15 <i>C</i>	+	4H	+	20M	≥ 23
					C, H, M	≥ 0

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^t x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^t + \epsilon^t) y \\ \text{s.t.} & A^t y \geq c \\ & y \geq 0 \end{array}$$

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

The change in profit when increasing hops by one unit is $-\tilde{c}_h = -c_h + c_B^t A_B^{-1} A_{*h} = \underbrace{c_B^t A_B^{-1} e_h}_{\gamma *} e_h.$ Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 14

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{xy} \leq c_{xy}$$
 .

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{X} f_{\mathcal{V}X} = \sum_{X} f_{X\mathcal{V}} \; .$$

(flow conservation constraints)

Flows

Definition 15 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} \; .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

max		$\sum_{z} f_{sz} - \sum_{z} f_{zs}$			
s.t.	$\forall (z, w) \in V \times V$	f_{zw}	\leq	C_{ZW}	ℓ_{zw}
	$\forall w \neq s, t$	$\sum_{z} f_{zw} - \sum_{z} f_{wz}$	=	0	p_w
		f_{zw}	\geq	0	

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y$	\geq	0
	$f_{sy}(y \neq s,t)$:	$1\ell_{sy}$ $+1p_y$	\geq	1
	f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x$	\geq	-1
	$f_{ty}(y \neq s,t)$:	$1\ell_{ty}$ $+1p_y$	\geq	0
	$f_{xt} (x \neq s, t)$:	$1\ell_{xt}-1p_x$	\geq	0
	f_{st} :	$1\ell_{st}$	\geq	1
	f_{ts} :	$1\ell_{ts}$	\geq	-1
		ℓ_{xy}	\geq	0

with $p_t = 0$ and $p_s = 1$.

$$\begin{array}{rcl} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \colon 1 \ell_{xy} - 1 p_x + 1 p_y \geq 0 \\ & \ell_{xy} \geq 0 \\ & p_s = 1 \\ & p_t = 0 \end{array}$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

