
Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of

a,b ≥ 0 gives us a lower bound (e.g. a = 12, b = 28 gives us a

lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ cj then

∑
iyibi will be an

upper bound.
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Duality

Definition 2

Let z =max{ctx | Ax ≥ b,x ≥ 0} be a linear program P (called

the primal linear program).

The linear program D defined by

w =min{bty | Aty ≥ c,y ≥ 0}

is called the dual problem.
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Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bty | Aty ≥ c,y ≥ 0}
ñ w =max{−bty | −Aty ≤ −c,y ≥ 0}

The dual problem is

ñ z =min{−ctx | −Ax ≥ −b,x ≥ 0}
ñ z =max{ctx | Ax ≥ b,x ≥ 0}
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Weak Duality

Let z =max{ctx | Ax ≤ b,x ≥ 0} and

w =min{bty | Aty ≥ c,y ≥ 0} be a primal dual pair.

x is primal feasible iff x ∈ {x | Ax ≤ b,x ≥ 0}

y is dual feasible, iff y ∈ {y | Aty ≥ c,y ≥ 0}.

Theorem 4 (Weak Duality)

Let x̂ be primal feasible and let ŷ be dual feasible. Then

ctx̂ ≤ z ≤ w ≤ btŷ .

EADS II 5 Duality

© Harald Räcke 67



Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exists primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.
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The following linear programs form a primal dual pair:

z =max{ctx | Ax = b,x ≥ 0}
w =min{bty | Aty ≥ c}

This means for computing the dual of a standard form LP, we do

not have non-negativity constraints for the dual variables.
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Proof

Primal:

max{ctx | Ax = b,x ≥ 0}
=max{ctx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{ctx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bt −bt]y | [At −At]y ≥ c,y ≥ 0}

=min

{[
bt −bt] · [y+y−

]∣∣∣∣∣ [At −At] ·
[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}
=min

{
bt · (y+ −y−)

∣∣∣At · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bty ′

∣∣∣Aty ′ ≥ c,y ′ ≥ 0
}
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = ct − ctBA−1
B A ≤ 0

This is equivalent to At(A−1
B )tcB ≥ c

y∗ = (A−1
B )tcB is solution to the dual min{bty|Aty ≥ c}.

bty∗ = (Ax∗)ty∗ = (ABx∗B )ty∗
= (ABx∗B )t(A−1

B )
tcB = (x∗B )tAtB(A−1

B )
tcB

= ctx∗

Hence, the solution is optimal.
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Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z∗

and w∗ denote the optimal solution to P and D, respectively.

Then

z∗ = w∗
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Lemma 6 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on

X. Then min{f(x) : x ∈ X} exists.
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Lemma 7 (Projection Lemma)

Let X ⊆ Rm be a non-empty convex set, and let y ∉ X. Then

there exist x∗ ∈ X with minimum distance from y. Moreover for

all x ∈ X we have (y − x∗)t(x − x∗) ≤ 0.

P

y

x∗

x
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Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ �. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y − x‖ ≤ ‖y − x′‖}. This set is

closed and bounded.
ñ Applying Weierstrass gives the existence.

P

y

x∗
x′
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Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.
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Theorem 8 (Separating Hyperplane)

Let X ⊆ Rm be a non-empty closed convex set, and let y ∉ X.

Then there exists a separating hyperplane {x ∈ R : atx = α}
where a ∈ Rm, α ∈ R that separates y from X. (aty < α;

atx ≥ α for all x ∈ X)
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Proof of the Hyperplane Lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)t(x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = atx∗.

ñ For x ∈ X : at(x − x∗) ≥ 0, and, hence, atx ≥ α.

ñ Also, aty = at(x∗ − a) = α− ‖a‖2 < α

P

y

x∗x

H = {x | atx = α}
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Lemma 9 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with Aty ≥ 0, bty < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > ytb = ytAx ≥ 0

Hence, at most one of the statements can hold.
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Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with Aty ≥ 0, bty < 0.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.



Lemma 10 (Farkas Lemma; different version)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax ≤ b, x ≥ 0

2. ∃y ∈ Rm with Aty ≥ 0, bty < 0, y ≥ 0

Rewrite the conditions:

1. ∃x ∈ Rn with
[
A I

]
·
[
x
s

]
= b, x ≥ 0, s ≥ 0

2. ∃y ∈ Rm with

[
At

I

]
y ≥ 0, bty < 0
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Proof of Strong Duality

P : z =max{ctx | Ax ≤ b,x ≥ 0}

D: w =min{bty | Aty ≥ c,y ≥ 0}

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,

P and D are non-empty). Then

z = w .
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Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−ctx ≤ −α

x ≥ 0

∃y ∈ Rm;z ∈ R
s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R
s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.
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Proof of Strong Duality

∃y ∈ Rm;z ∈ R
s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

If the solution y,z has z = 0 we have that

∃y ∈ Rm

s.t. Aty ≥ 0

ybt < 0

y ≥ 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.
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Proof of Strong Duality

Hence, there exists a solution y,z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but bty < α. This means that

w < α.
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Fundamental Questions

Definition 12 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist

x ∈ Qn s.t. Ax = b, x ≥ 0, ctx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP? yes!

ñ Is LP in P?

Proof:

ñ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
ñ We can prove this by providing an optimal basis for the dual.

ñ A verifier can check that the associated dual solution fulfills

all dual constraint and that it has dual cost < α.
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Complementary Slackness

Lemma 13

Assume a linear program P =max{ctx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bty | Aty ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i ) has slack if x∗j > 0 (y∗i > 0),

(i.e., the corresponding variable restriction is not tight) and a

contraint has slack if it is not tight, then the above says that for

a primal-dual solution pair it is not possible that a constraint

and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

ctx∗ ≤ y∗tAx∗ ≤ bty∗

Because of strong duality we then get

ctx∗ = y∗tAx∗ = bty∗

This gives e.g. ∑
j
(ytA− ct)jx∗j = 0

From the constraint of the dual it follows that ytA ≥ ct. Hence

the left hand side is a sum over the product of non-negative

numbers. Hence, if e.g. (ytA− ct)j > 0 (the j-th constraint in

the dual is not tight) then xj = 0 (2.). The result for (1./3./4.)

follows similarly.

EADS II 5 Duality

© Harald Räcke 88



Interpretation of Dual Variables

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160
35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H+35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{ctx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bt + εt)y
s.t. Aty ≥ c

y ≥ 0
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Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

− c̃h = −ch + ctBA−1
B A∗h = ctBA−1

B eh.ctBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0



Of course, the previous argument about the increase in the

primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of

one resource may not allow the objective value to increase.
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Flows

Definition 14

An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is

a function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)
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Flows

Definition 15

The value of an (s, t)-flow f is defined as

val(f ) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0

EADS II 5 Duality

© Harald Räcke 96



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− 1+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ 1 ≥ 0

fty (y ≠ s, t) : 1`ty− 0+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ 0 ≥ 0

fst : 1`st− 1+ 0 ≥ 0

fts : 1`ts− 0+ 1 ≥ 0

`xy ≥ 0
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− ps+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ ps ≥ 0

fty (y ≠ s, t) : 1`ty− pt+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ pt ≥ 0

fst : 1`st− ps+ pt ≥ 0

fts : 1`ts− pt+ ps ≥ 0

`xy ≥ 0

with pt = 0 and ps = 1.

EADS II 5 Duality

© Harald Räcke 98



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).
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One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

EADS II 5 Duality

© Harald Räcke 100


	Duality

